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Using the torque magnetometer rotational hysteresis losses of Cu—17;Co alloy were
measured for different ageing times. The interpretation basing on extended Stoner and
Wohlfarth theory including both shape and magnetocrystalline anisotropies is given.

1. Introduction

Knowledge of the type and size of magnetic anisotropy of single-domain ferromagnetic
particles is essential in investigating materials suitable for permanent magnets. Analysis
of the torque curves measured in strong magnetic fields enables one to determine the
values of the magnetic anisotropy constants but does not provide information on the
manner of magnetization of small particles nor on their shape. Measurement of rotational
hysteresis can provide much broader information [1-3].

Rotational hysteresis losses with coherent reversal magnetization of single-domain
particles have been discussed in detail-by Stoner and Wohlfarth [4].

For materials with high values of the anisotropy constant K, and low saturation
magnetization I, the critical magnetic field in the process of coherent rotation is very
large, whereas for the majority of materials used for permanent magnet reversal magne-
tization occurs at much lower fields [2-6] in curling, fanning or buckling processes. The
type of reversal magnetization depends on the shape of the particle [7}.

In the present paper an interpretation is given for rotational hysteresis for Cu—1 7,Co
monocrystals, assuming the simultaneous occurence of crystal and shape anisotropies.

* Address: Instytut Fizyki UJ, Reymonta 4, 30-059 Krakéw, Poland.
#% Address: Zaklad Fizyki Ciala Stalego, Instytut Metalurgii, Akademia Gérniczo-Hutnicza, Al. Mic-
kiewicza 30, 30-059 Krakoéw, Poland.
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The McCurrie [8, 9] model was used to determine the obtained results. In this model
the Co particles are assumed to be rotational ellipsoids, the principal axes of which coincide
with the crystallographic directions [100], [010] and [001].

2. Experimental

The rotational hysteresis was measured for Cu—Co monocrystals containing 1.01 %Co.
The spectrographic analysis of impurity contents gave: 1 ppm As, 1 ppm Si, 1 ppm Mg
and 2 ppm Fe. Discs 5 mm in diameter and 1 mm in thickness were used in the measure-
ments performed with a torsion anisometer. Discs were cut in such a way that their planes
coincided with the (001) plane. The accuracy of orientation was +0.0175 radians. In

order to obtain a uniform solution of Co in Cu matrix samples were sinteréd in an oven

in a protective atmosphere of argon at a temperature of 1273 K for 4 hours and then cooled
to room temperature in an oil bath. Standardized samples were aged at 873 K. After
given periods of ageing, samples were quenched in water to room temperature. Rotational
hysteresis was measured for samples aged for periods of 3, 6, 9, 16, 24, and 700 hours.

Rotational hysteresis was given by the field enclosed between torque curves obtained
by rotating the electromagnet from 0 to 2n “to-the-right” and from 27 to 0 ““to-the-left”.
A detailed description of the construction and principle of operation of this anisometer,
and of the experimental procedure, are given elsewhere [10, 11]. Rotational hysteresis
losses were measured for room and liquid nitrogen temperatures, i.e. 300 K and 77 K.
The accuracy of measurement was 3 %,.

3. Experimental results

The results of measurements of rotational hysteresis for samples aged over various
periods are presented in the form of plots of the hysteresis versus magnetic field strength.
In Fig. 1 results are presented of measurements of losses at 300 K. It is seen that for samples
aged for up to 16 hours, the dependence losses vs magnetic field strength features one
maximum. For a sample aged for 24 hours maxima are seen at two values of the magnetic
field, one at 1.43 X10* A/m and the other at 11.94 X10* A/m. At the temperature 77 K

(Fig. 2) a peak at low field values occurs for the sample aged 6 hours while for the sample

aged for 3 hours no changes of rotational hysteresis are seen at either temperatures. In
Fig. 3 rotational hysteresis of a sample aged for 700 hours is presented. In this case no peak
is seen at low fields and loss values at 77 K and 300 K are similar.

It is worth noting that loss values in the maxima occurring at stronger fields do not
vary much on cooling of the sample from 300 K to 77 K while the peak intensity at low
fields increases with cooling time. For example, it may be noticed that for a sample aged
24 hours the value of losses at the low-field maximum for 300 K is six times smaller than
that for 77K .
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Fig. 3. Rotational hysteresis losses for a sample aged for 700 hours, at 300 K and 77K

4. Theoretical considerations

4.1. Description of the model

The models of magnetization of single-domain particles discussed up to now do not
explain the expetimentally obtained behaviour of rotational hysteresis, even qualitatively.
The assumption of various models [2-4] leads only to a widening of the lower range of
fields in which losses of rotational hysteresis occur. To find an explanation, an analysis
was carried out of critical fields for magnetization vector reversal by coherent rotation
taking simultaneously into account crystal and shape anisotropies of a ferromagnetic
particle. For this purpose it was assumed [9, 12] that small Co particles are of the shape
of rotational ellipsoids the principal axes of which coincide with the [100], [010] and
[001] directions. Under this assumption, in a disc-shaped sample in which the (001) mono-
crystal plane is parallel to the disc plane three groups of particles appear (Fig. 4). The
first group consists of rotational ellipsoids the principal axes of which coincide with the
[100] direction. The second group is formed of particles the main axes of which are parallel
to the [010] direction, and the third group can be treated as spheres under rotations of
the magnetization vector in the (001) plane. Critical fields for magnetization of this group
are described by crystal anisotropy [13].



821
Introducing an additional assumption that all particles are of identical shape and

that the energy of magnetostatic interaction of particles is small and can be neglected,
the total energy of such a set of particles can be written in the following form:

E = E1 +E2+E3’ (1)

[010]

(001)

[100)

Fig. 4. Section of the Cu—Co monocrystal with the (001) plane
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Fig. 5. Anisotropy energy of a particle with the shape of a rotational ellipsoid, the principal axis of which
coincides with the [100] monocrystal direction, for various values K/K;, K3 > 0
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where E,, E,, E; are the free energies of particles ellorigated along the directions [100],
[010] and [001], respectively. If the sample plane is the (001) monocrystal plane, then
free energies of the given groups of particles are as follows:

K,v,

E; = Kv, sin® ¢, + sin’ 2, — HIp; cos (6—@)), &)
Kv
E; = K, sin” (00°— ;) + —=sin” 2, Hlp, cos (0~ ), @)
K
E; = :], ? sin? 2¢3— HIw; cos (0—g3). @

The angles @, @», @3 and @ are defined in Fig. 5. As none of the three crystallographic
directions is preferred one may assume that

, &)

1)1=172=Us=

vV
3

where V is the volume of the ferromagnet.

4.2. Anisotropy energy of particle

Let us study the case of a particle having the shape of a rotational ellipsoid, the principle
axis of which coincides with the [100] monocrystal direction. The anisotropy energy
density of such a particle is

K
e, = Ksin® ¢+ Tl sin? 2¢,, (6)

where e, denotes the anisotropy energy density, K is the shape anisotropy constant and K
the crystal anisotropy constant. Extrema of the anisotropy energy occur at the position
for which

dey

doy

Analysing the sign of the second derivative of the expression giving the density of aniso-
tropy energy for values which solve equation (7), one obtaines the following conditions:

— if K; > 0 and K > K; then the particle possesses one easy direction coinciding
with the principal axis of the ellipsoid. The hard direction is perpendicular to the principal
axis.

— if K; > 0 and K < K, then two directions appear along which the energy reaches
minimum values. One of these directions coincides with the principal axis of the ellipsoid
and the other form an angle n/2 with the principal axis. Hard directions occur at positions
given by the relation

K
= Ksin 2¢, (1+ —El cos 2<p1> = 0. @)

K

—K—l’ (8)

cos 2¢4,, =
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where @,,,is the angle between the hard directions and the axis of the particle (the principal
particle axis coincides with the [100] monocrystal direction).

The dependence of energy on the angle for the case K; > 0 is shown in Fig. 5 for
given values of the ratio K/K;. As cubic cobalt has a negative constant of crystal anisotropy,
this case will be discussed more extensivelly. If K > —Kj, then, as has been shown else-
where (7), the easy particle direction coincides with the direction of the principal axis
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Fig. 6. Anisotropy energy of a particle with the shape a rotational ellipsoid the principal axis of which
coincides with the [100] monocrystal direction, for various values K/K;, K; < 0

and the hard direction is perpendicular to that axis. The energy of the particle behaves
similarly to that for the case of particles of uniaxial anisotropy (Fig. 6). If K < — K,
then the direction [100] (direction of the principal axis) ceases to be an easy direction.
Easy directions occur at new positions. The angle between the easy direction and the
direction [100] is given by the relation (8). As may be seen in the figure, a particle of this
type possesses two minima, given by equation (8), and two maxima of anisotropy energy,
each of different value. One of these maxima coincides with the [100] direction (along
the principal axis of the ellipsoid), and the other with the [010] direction (perpendicular
to that axis).

The values of energy barriers change, depending on the value of the ratio K/K;.
The value of the energy barier separating the two easy directions, ¢y, and 360°— ¢,
calculated from equation (6) is

K, K\?
dey=——(14=), 9
€41 4<+K1> )
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and the value of the energy barrier separating the two neighbouring easy directions, Pims

and 180°— ¢y, is
4 Kify_ X ’ 10)
e = — —_— — .
ATt 2 X, (

In Fig. 6 the angular dependence of anisotropy energy of a particle for which K; < 0
is shown for several values of the ratio K/K;. The dependence for the special case, K/K,

= —(.5, is shown separately in Fig. 7.
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Fig. 7. Anisotropy energy vs angle measured from the principal axis of the particle, for the case when axis
coincides with the [100] direction of the monocrystal, for K/K; = —0.5 and K, < 0

4.3. Calculation of critical fields
When both anisotropies are present simultaneously, the calculation of the dependence
between ¢ and 0, for given H, is carried out similarly to the case when only one type of
:anisotropy is taken into account [1, 4]. Consider particle ensemble with energy E; (clon-
gated in the [100] direction). The condition for minimum energy is
OFE K
6_1 = K, sin 2¢, + —;——1 sin 4y —HIp, sin (0—¢,) = 0. 11
0Py
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Introducing the following parameters:

h A, d = (12)
= — an c= - —,
! 2K, K,
from equation (11) one obtains
—csin 2@, +3sin4 ¢, +2h; sin (0—¢,) = 0. (13)

Irreversible jumps of the magnetization vector will occur at such values of 6 and ¢ for
which the condition of minimum energy is fulfilled together with the following condition:

*E,

g1
From equations (13) and (14) it is possible to determine the value of 0 and ¢ for which,
for given h;, an irreversible jump of the magnetization vector occurs. From the analysis
of conditions of the solution of these equations the h, field ranges are obtained within
which irreversible jumps of the magnetization vector occur. In this case one obtains two
critical field ranges associated with jumps of the magnetization vector over two different
barriers of particle energy (9), (10). One solution, which has a physical sense for ¢ < 1,
gives critical fields within which irreversible jumps of the magnetization vector over the
lower energy barrier occur (maximum along the direction of the principal axis)

= —¢Cos 2¢p,+cos dp;—hy cos (0—¢,) = 0. (14)

, —¢*4+20c? +8—c3 (2 +8)/2 —Be(c? +8) /A2
=1 — - (15)
128
L= 1—c, (16)

where A}, denotes the field at which jumps over the fower maximum begin, and A7 denotes
the field at which jumps cease to occur. The second pair of solutions gives the field ranges
at which irreversible jumps over the higher energy barrier occur

—¢* 420 + 8+ c*(c? +8)/7 + 8e(c? + 8)/*
e = [ i 128 - ] ; an
1= 1+e (18)

The dependences (15) and (16), as well as (17) and (18) are presented graphically in Fig. 8.
It follows from calculation that, for a given ¢, if the field is lower than that given by the
formula (17) (curve 2 in Fig. 8) rotation of magnetization vector through a more difficult
particle direction is not possible. The magnetization vector oscillates reversibly around.
the easy direction.

Trreversible jumps occur for fields in the range given by equation (17) and (18) (the
surface contained between curves 2 and 1 in Fig. 8). For fields larger than A, given by
equation (18) (curve 1 in Fig. 8), the state of particle saturation is achieved. If ¢ < 1,
then besides the described range of fields, corresponding to the behaviour of the magneti-
zation vector at rotating through the higher energy barrier, another range appears given
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by equation (15) and (16) (curves 3 and 4 in Fig. 8) which distinguishes the field range
of the same type, cortesponding to a rotation of the magnetization vector over the lower
energy barrier. The ratios of the critical field at which irreversible jumps occur to the
critical field at which they disappear, calculated using equations (15) and (16), and (17).
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Fig. 9. Dependence of fp/h; vs ¢ = —K/K;
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and (18), are shown in Fig. 9 as a function of ¢. Ay ,/h; = 0.25 for ¢ = 0 (crystal anisotropy
of a cubic crystal) and approaches asymptotically the value &, ,/h; = 0.5 as ¢ > o (curve I
in Fig. 9), which corresponds to uniaxial anisotropy. Curve 2 in this figure shows the ratio
hy,/hy. For ¢ = 0 hy,/hy = 0.25 and approaches zero for ¢ = 1.

According to the above discussion and plots (Fig. 8) one concludes that in the case of
such a particle, two types of irreversible jumps of magnetization vector are possible.
Moreover one observes that for ¢ < 1 two field range exist in which rotational hysteresis
occur. If the value of the parameter ¢ is smaller than about 0.55, then the critical field
ranges for jumps over the high and low maxima energy partly overlap. For ¢ valies in
the range 0.5 < ¢ < 1 one obtains two separate ranges. In the latter case rotational
hysteresis appear for two field ranges. For ¢ > 1 losses are of the same character as those
for a particle with uniaxial anisotropy, but in this case the irreversible jumps of magnetization
vector occur in the field range given by inequality h,, << & < hy. The critical fields and
rotational hysteresis losses of [010] elongated particles are the same as those of the above
discussed particles elongated along the [100] direction. Rotational hysteresis and critical
field for the third group of particles, namely for those elongated along the [001] direction,
aré’'the same as those for a regular crystal, i.e. losses occur for field equal to H = —~0.25
2K, /I, and disappear for H = —2K/I,.

5. Interpretation of the experimental results

From the earlier discussion in § 4 it follows that the behaviour of rotational hysteresis
losses as a function of magnetic field intensity depends on the value of the ratio between
the constants of shape and crystal anisotropies, K/K;. Depending on the value of this
ratio, one or two maxima may appear in the curve. Fields at which these maxima occur
are associated with the value of the ratio K/K, through equations (15), (16) and (17), (18).
Thus, a simple model enables one to explain the observed behaviour of rotational hysteresis
obtained experimentally for the Cu--1%Co alloy. It may be seen in Fig. 1 and Fig. 2 that
the positions of the maxima of losses in weak magnetic fields do not change much with
ageing times. A more detailed calculation was performed for a sample aged for 24 hours.
For this sample the first maximum occurs at the field H = 1.27x 10* A/m. To perform
calculations values of the crystal anisotropy constant for samples aged for various periods
were taken from literature [14, 15]. The reduced field # = —HI/2K, corresponding to
the maximum calculated using the above data is # = 0.089. It is seen from the plot in
Fig. 8 that for such % values only rotational hysteresis connected with irreversible jumps
of the magnetization vector through the lower barrier energy (given by Eq. (10)) are
possible. The value of the ratio ¢ = — KJ/K, corresponding to this critical field, determined
using the plot in Fig. 8, is equal to ¢ = 0.5. The reduced field 4 at which rotational hysteresis
over the lower energy barrier disappear at that ¢ value (Eq. (16)) is & = 0.5, which corre-
sponds to H = 7.22x 10* A/m.

From the discussion presented in § 4 it follows that such particles have a second,
higher energy barrier. Irreversible jumps of the magnetization vector over that barrier
begin for the field H = 6.35%10* A/m and end for H = 21.7x 10* A/m. If only crystal
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anisotropy is included, losses should begin to appear at H = 4.82x 10* A/m and cease
at H = 14.48 x 10* A/m. The model discussed in § 4 enables one to explain the appearance
of rotational hysteresis in magnetic fields lower than those expected for a regular crystal
without accounting for particle shape anisotropy.

At this stage quantitative interpretation is rather difficult, owing to the fact that this
maximum would arise from losses connected with irreversible jumps of the magnetization
vector over the barrier of anisotropy energy of particles of with non-zero values of the
shape anisotropy coefficient K, as well as from spherically shaped particles.

TABLE 1

Field intensities H,, at which strong-field maxima occur, fields Hy at which rotational hysteresis losses
disappear and values of ¢ = — K/K; calculated from torque measurements [14] and from field values H,,
and Hy. The H, and Hy values were obtained from rotational hysteresis measurements

A) Room temperature (300 K)

Ageing | H, Hy ‘ e R S )2 e ¢
time [A/m] [Ajm] | [J/m] [J/m3/] [A/m} c* calcul. | calcul.
[hour] x 10~% x 1074 x 104 x 104 x 10~# from Hy, | from Hy
1 2 3 ! 4 5 6 7 | 8 9
—
3 | 7.56 27.06 9.02 2.65 11.39 0.30 1.02 1.35
6 8.70 30.24 9.20 3.50 11.62 0.38 1.24 1.60
9 9.55 29.84 9.35 435 11.81 046 | 137 | 152
16 [ 9.95 34.76 9.72 6.35 12.35 0.57 | 140 | 1.83
24 11.94 36.60 10.17 8.45 12.84 083 | 1.60 1.85
7002 | 1151 58.09 — — 13.65 — | 238 | 325
B) Liquid nitrogen temperature (77 K)
_ ~ —
1 2 3 l 4 5 6 7 ‘ 8| 9
|
3 7.96 27.85 | 10.10 2.65 12.78 0.26 0.94 ‘ 1.17
6 7.96 29.44 10.32 3.50 13.03 0.34 089 | 1.25
9 5.41 21.88 10.50 4.35 13.26 0.41 041 | 0.65
16 10.47 35.81 10.90 6.35 13.83 0.57 130 | 158
24 13.43 36.31 11.41 8.45 14.48 0.74 1.70 ‘ 1.52
7002 18.30 6247 |  — — 15.41 — | 207 | 305

* K1, K and ¢ values obtained from the analysis of torque curves [14].
2 K, values taken from extrapolation corresponding to solid material.

The observed large increase in losses observed while cooling the samples aged for
24 hours from 300 K to 77 K can only be explained by the increase in the number of stable
particles. The position of the peak, close to that expected theoretically for cubic crystals,
proves that small-sized particles have a roughly spherical shape (at 300 K they are super-~
paramagnetic and give no rotational hysteresis [16], and at 77 K they become stable).
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For all samples there appears a broad maximum at stronger fields. Fields for which the
second maximum in the loss curves appears and fields at which these losses disappear are
listed in Table I. In those tables also ¢ values determined from the analysis of torque
curves, taken from [14] are listed. It is seen from this Table that ¢ values determined at
77K are lower than those obtained for 300 K. These results confirm other investigations.
[14] where it was found that K; can change with temperature while X is the same for both
. temperatures. Also, ¢ values determined from the second peak are larger than those deter-~
mined from the torque curves. Moreover, for the sample aged for 24 hours, the ¢ value
determined from the second maximum differs considerably from the respective value
found from the low field peak. The latter value is closer to that obtained from the analysis
of the torque curves. This is connected with the fact that rotational hysteresis does not
“see” superparamagnetic particles [16] whereas such particles contribute to the torque:
curve.

6. Concluding remarks

In conclusion, one should stress that the magnetic properties of small particles of
the Cu—19%Co alloy cannot be described by taking into account only crystal anisotropy
or only shape anisotropy. It is necessary to include both factors simultaneously.

The six-fold increase of the low field peak observed on cooling the sample aged for
24 hours from 300 K to 77 K, or the appearance of this peak in samples aged for shorter
periods, can only be explained by the increase in the number of stable particles during
cooling. It follows that this peak is due to small-sized particles which at 300 K are super-
paramagnetic and do not contribute to rotational hysteresis and which at 77 K-become
stable and then contribute. Because the range of fields for which the low field peak appears.
is close to field values for which rotational hysteresis losses occur for cubic crystals, it
follows that small-size particles have almost spherical shapes (have low values of the
shape anisotropy constant) and thus a low value of ¢. Small differences between rotational
hysteresis for high magnetic fields at 300 K and 77 K would indicate that these arise from
particles stable at both temperatures. Moreover, very small differences between the
positions of maxima and between the field values at which these peaks disappear, indicate
that shape anisotropy dominates. As was shown elsewhere [14], this anisotropy does not.
change with temperature.

One concludes that the model of McCurrie assumed here comprising both crystal
and shape anisotropies, is too simple to explain the obtained experimental resuits. It
seems that in order to achieve quantitative agreement, one would have to include, on the
one hand, the fact that particles exhibit a distribution of shape anisotropies including at
the same time the distribution of particle volumes, and on the other hand, one should
also take into account the fact that particles of dimensions smaller than a critical dimension
are superparamagnetic and do not exhibit rotational hysteresis. However, such an approach
is difficult for mathematical reasons. Despite this, one can conclude that the results
obtained from analysis of rotational hysteresis do not contradict the assumed model of
uniform rotation which takes into account both types of anisdtropy.
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