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The self-consistent renormalization of spin waves in the Heisenberg ferromagnet
described in terms of Dyson’s ideal magnon modes is proposed. As a first step, the renormal-
ization of the spin wave energy and the average spin wave occupation numbers is carried
out by resorting to series of bubble graphs due to dynamic and kinematic interactions. The
second step consists in evaluating how the renormalization of spin waves is contributed
to form diagrams being composed of one energy denominator. Such an approximation is
proved to hold within the entire interval of temperatures from absolute zero to the Curie
point.

1. Introduction

In one of our preceding papers [1] a procedure for figuring out series of bubble graphs
due to dynamic interaction between spin waves was established. The results obtained
therein agreed with those of Bloch [2] and Loly [3] which were derived along different
lines. )

The attempt made in [4] and [5] to include into the self-consistent renormalization
of spin waves the bubble diagrams due to the kinematic interaction of magnons did not
suffice for yielding the correct contribution. Indeed, the kinematic bubble graphs entered
the exponents of the spin wave population numbers in the form of positive functions and
thus increased the magnetization of a ferromagnet at all temperatures, which was incom-
patible with the experimental data.

In order to improve the renormalization due to the kinematic interaction between
spin waves, we should compute a series of diagrams comprising one energy denominator.
The contribution of such diagrams prevails against the disadvantegous effect of kinematic
bubble graphs on the renormelization of average spin wave occupation numbers and
correctly affcets the spin wave energy.

There is still another side to this question. In our papers [4, 5] the ring diagrams
deficient in energy denominators were not taken into account, because they were not
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adapted to our scheme of self-consistent renormalization of spin waves. It turns out,
however, that the series of kinematic bubble graphs is divergent, see e.g. [6]. As the mean
value of the kinematic operator over the Gibbs ensemble must be finite this divergence
has to cancel out with the similar one due to the series of ring diagrams. As to the latter,
they result from higher order terms of the kinematic operator. Hence, the divergence
can be avoided by retaining only several kinematic bubble graphs of the lowest order.

The investigation throughout this paper is based on Matsubara [7] thermodynamical
perturbation calculus. Different approaches were given in papers [8-11].

2. The partition function

Proceeding with the investigation of our former papers, we shall describe a cubic
isotropic ferromagnet, by using the Heisenberg exchange Hamiltonian and the Zeeman
term expressed in Dyson [12] ideal spin wave modes i.c.

} H = Eo+Ho+Hy,. @.1)
E, = —LSN—3JNS?y,, (2.2)
Ho =), (L+e)azay (2.3)
A
&, = JS(Po—72)s 24
V2 = ), exp il - d, (2.5)
3
Hy= —}JN' Y I,05::0,-:0,80 (2.6)
Ago
I =71+ Yi40-0— Vato™ V2o (27)

where L is the magnetic field strength multiplied by the Bohr magneton and Landé isotropic
factor, S is the quantum number of the resultant atomic spin, N is the number of lattice
sites in the crystal under consideration, J is the exchange integral between nearest neigh-
bours, ¢, is the energy of independent spin waves, ‘A, ¢ and @ are reciprocal lattice vectors,
& are vectors connecting all nearest neighbours and at, a, represent the creation. and
annihilation Bose-operators of ideal spin waves.

Reffering to [4], [7] and [13], we get for the partition function

Tr (e ""S(B)Ks)

Z=Tr( "Ry = e Tr (™) — o,

e[ fEt T4+ 3 Dyt 3 Gl B = 2.8)
7 p=1 p=0 kT

where

1, = [exp BL+e)—1]7" 29
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is the average occupation number of independent spin waves, and

N

. B
S(B) = fHoe PHoTH) —_ Foxp § d=H(v)], (2.10)
oy
Hy(7) = " H e~ ", 2.11)
The expressions ]
B 8 B
—1) i A )
D, = ¢ r) fdti J dt, ... fdr,(T[H,(rl)H,(rz) e H(@)Po p=1,2,3,..., (2.12)
i (1] [1] o
with ,
. Tr(e #ToAy ’
Ay = ——— 2.13
@ = 213

we.shall call -dynamic graphs (diagrams). They are due to the operator H; responsible
for the dynamic interaction of spin waves. '
The cross-term diagrams (p # 0)

B B B
C, = (_p? Jdtl f dr, ... f due( T{H (T )H|(T,) ... Hy(z) [R(O—1T1>.  (2.14)
0 0 .0 .

result from dynamic and kinematic interactions between ferromagnons. Finally,
Co = {[Ks(0)—1}, (2.15)

is the series of kinematic graphs.

In the above equations 7T is the Wick [14] ordering symbol and ¢ emphasized the
~ necessity of allowing for the connected diagrams only, as the disconnected ones appear
from the expansion of exp (3 Dp"‘ch) in a series, see e. g. [18], [19]. K is the kinematic

r »

projection operator ensuring that the spectrum of eigen-values of a?af, where

ay = N"'2Y a¥ exp (id - f), (2.16a)
j“

ap = N3 a, exp(~i-f) (2.16b)
A

and f is the lattice vector, has to be correctly 0, 1,2, ..., 25 instead of 0, 1,2, ... co.
Explicitely [15, 16],

Ks(0) = K¢ = [f] 028 —ajay), 217

0(2S—afa;) < 1— 'lZo (= DTS NQS+1+1)] Haf)?S+H+ 125411, (2.18)

1,x >0,
0(x) = { _ (2.19)

0,x < 0.
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For the cases S = 1/2, 1, 3/2 etc.

. : 1
Run=1-b ) @FG+E Y @i+ 59 ) @G
I S

J1:52
—% ; (@ptaf+(—H @ f?fz (af)(a},)’a},a5,+% ; (@paz+ .., (2.20)
Ri=1-3% (@p)aj+3 X (@) =75 T@yapt .o (2.21)
Ryp=1-%% zf; (@) at++5 ; @pai+ ... (2.22)
énd so forth.

-, The diagrams (2.12), (2.14) and (2.15) can be figured out by applying the Wick [14]
and Thouless [13] theorems and by using the following propagators of independent spin
waves (close to their mathematical expressions are given corresponding graphical forms
according to [7]):

Ts
ai(r)%a,(t)°® = Spaet e =gz, — 1)1+ 0(1,— 1) (e + 1] , (223)
_ . . %,
_ Ty
a,(t)%ar(t,)® = 8ppe” LT O TD0(r) —15) (1, + 1)+ 0(t2 — 1), ] , (2.24)
(7
G505 = a(t)%a,(1)° = 0, (2.25)
i EYRN) °o __ -
ag(‘c) aa(r) - 5@,0"93 } @ (226)
a(1)%ai(0)® = 8,0, +1) v
wherein
- l,0e =0,
80 =N"1Y expi(e—0) - f= { (227
s 0,0 # 0.

The dots connecting every operator pair in (2.23)—(2.26) and further on denote the
contraction of both operators. Such a contraction is according to the Wick [14] theorem
a classical number and expresses the result of subtracting the chronological product of
two operators from the normal one.
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3. The graphs due to dynamic interaction of spin waves

In this section, we confine ourselves to one class of dynamic diagrams (2.12) namely
to those deficient in energy denominators. Referring the reader to paper [1] for details,
we adduce here the final results. The graphical form of those diagrams is represented

in Fig. 1.
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Fig. 1. Examples of the dynamic graphs

By Eq. (2.8), the free energy
F=pf'nz T 3.D
including the graphs plotted in Fig. 1 is easily verified to be

—p S +a)-p 3 D,

= Eo+ X (L+2)i,—(2IS%0) "N (T i) + 1 Y. [, In 7, ~ (147, In (1+72,)] 3.2)
4 ° % o
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where
Ay = {exp B[L+&,(1—Y/S)]-1}7", (3.3)
Y=N"' Zl:(l"h/)’o)’;z - (3.4)

and the function Y is self-comsistently determined. From Eqgs (3.3) and (3.4) the Curie
temperature, i.e. the temperature at which the derivative of the spontaneous magnetization
with respect to temperature becomes infinite, can be numerically computed. Eq. (3.2)
implies that both the internal energy and the entropy of a ferromagnet are contributed
to by dynamic interaction of spin waves.

4. Effect of kinematic bubble diagrams on the self-consistent renormalization of spin waves

In order to derive kinematic graphs (2.15), we avail ourselves of Eqs (2.20)-(2.22)
and (2.25), (2.26). For S = 1/2, we get the following diagrams (see [4]).
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Fig. 2. Examples of diagrams due to kinematic interaction of spin waves

The number above each graph denotes the amount of topologically equivalent forms.
We call Coz, Cos, ciy, Cgi), CY, ¢, ¢V, P, ¢, D, Y and similar ones bubble
diagrams whereas the graphs C§2, C((,?, CD, C, C8, C8), CL, CELD etc. are called

ring diagrams.



87

Let us exemplify the lines of figuring out one of those diagrams. By Eqs (2.15), (2.16a),
{2.16b), (2.20), (2.26) and (2.27), we have

C€)4 = < l: )2 Z (afx)z(afz) aflafz_J>

S1,f2

1 \
=3 —1’N~? Z oy +p,—v —v,)0(01 +0,—61—6,)

TH1H2VLV2
01020162

x (Tar(0af(0)ak(0)ak(0)a,,(0)a,,(0)a,,0)a,(0)]>. = CZ+CS) 4.1)

where

CS) = 2 (—%)ZN_Z E o(pty +pr—vi —v,)0(0 +0,—6,—0))

H1H2V1V2
01020102

X 16a3(0)%a1(0)*%a (0)**%a;(0)***%a,,(0)°a,,(0)***%a,,(0)***,,(0)** = 2N 2 Z nn g,
4.2)

1 o \ :
(O = 21 (—D*N~? E O(pty + pa— vy —v2)0(01 + 02— 61 —62)4a;,(0)°a;5,(0)*®

HB12V1V2
Q1020102

X afl(0)’“a;‘2(0)“'°av1(0)”‘av2(0)"°'a01(0)‘a02(0)°‘ =3IN2Y mmpnype—s (4.3

00

We introduce the auxiliary functions

A = NPT m = NTUY Y empnite, (44)
A A n=1
04 | ’
Ay = —p 1 L =N! y (n2+n)=N"1 E E ne Frktea) 4.5)
oL A
A 2 n=1_
924 e . S :
Ay = (=B 5t = N7! (2n;+3n3+n) = N~* y nle frdre) (4.6)
oL lad
A A n=1
and, quite generally,
ApAl -1 —Bn(L+
Aprr = (=B~ )" =N nle” Frten), 4.7
Linned

A n=1
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By reversal of these equations

N7! ;ﬁ,_ = A, (4.8)

Nt ;ﬁi = A,— Ay, (4.9)

N7'Y 1) =+ (4;3—34,+24,) (4.10)
A

etc. With the aid of Eqs (4.8) and (4.9), we obtain
C2 = 2N(A24,—-A43). 4.11)

Quite similarly one can derive the remaining kinematic bubble diagrams. As to the ring
graphs, C» exemplifies that they form linked clusters in products of average spin wave
occupation numbers. This is why they are improper to our renormalization scheme.

On the other hand; the diagrams C§};’ from Fig. 2 turn out to be

CH = N(—D)*!(k—-1)!4}, k=>4 (4.12)

and with k — oo they increase to infinity. Thus, the series of kinematic bubble graphs
proves to be divergent. Since the quantity C, from (2.15) must be finite, it can be assumed
that this divergence may be removed by the series of ring diagrams. This problem is, how-
ever, very intricate and will not be considered here.

The first ring diagram C§Y) results from the fourth order term in the kinematic opera-
tor, Eq. (2.20). As things are, we expect to obtain a plausible approximation by retaining
the first few terms in a series of kinematic bubble graphs.

After straightforward computational work, we get

K@ —11pe = N [—z(% AD)+22( Ay 2 AL 243

1
—23 (% AL+ N A§A3> ~ 52 A0+ 10 A4, + ] (4.13)

which because of the renormalization due to dynamic interaction becomes

KT8 [KipO)— 11} = N [—2@ A +2% 3 A34,) -2 At+243

S I . .
_23<%A§A§+§A2A3> —2 A5+ A, + ] (4.14)

with

Aprg = N7LY ¥ npe frilreali=20], (4.15)
A

n=1
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The free energy is then

. ) . \ ey )
F = Ey+ (L+e)n;— e, ) +B7! [7lnn,—(1+n;) ln (1+nr,)]
JINyo
P P

[4

| o N oy 1o . .
+N[A§—2A§A2+% At—243+2° (Ji A4+ §A§A3> + 52 A58 ATA,+ ]}

(4.16)

Let us minimize this expression with respect to 7;. We have

oF - 1+n . " . i
—— = L+¢&,(1-2Y)+p 1[—111 ot 424,242 +443 44,4,
M, n,

— 48 AT+ 8AA,+31 AT — % AJA, +4ATA5+84, A5+ ...
(A8 A 1600, — 22 AL )AL ] —0 @)
hence the zeroth-order solution assumes the form
7O = {exp [24;—242+445+ ... +B(L+e(1-2Y)]-137" (4.18)

On introducing the quantity
X=N1'Yn, (4.19)

we get

(4.20)

ezi~.2522+45(“3+ o HAILAEA(1=2D)) 1

At low temperature X is proportional to T 3/2 gnd in the magnetization series appears
a term ~T?3. Moreover, close to the Curie point X must be small and consequently the
series 2X —2X2+4X2+... reduced to its first few terms proves to be positive so that the
formula for the magnetization

- — E B_F =1— E %(0) '
wT) = N 1 NZ n (4.21)
A
reveals a larger magnetization than in the absence of kinematic interaction.
In order to improve self-consistent renormalization of spin waves, we must proceed
in calculating further perturbation terms. Especially, we can not dispense with graphs
comprising energy denominators.
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5. Diagrams composed of one energy denominator

Now, we consider graphs including one eﬁergy denominator. They are represented
in Fig. 3.
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Fig. 3. The graphs due to mixed dynamic and kinematic interactions between ferromagnons

For § = 1/2, easy but very lengthy computation yields (see Appendix A)

(i N = 5 551 5 557 55 57
E CP = 5 [T +441—4434, - 243 + 124143 +5 A345)

+8045—148 J44,4 ] (5.1)
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and by (2.8), (4.16) and (5.1) the free energy becomes

- 2 .\
F=E g L . E /
ot (L+¢)n; JY0N< e,na>
7

e

+87° {Z [, Inn,—(1+n,)In(1+7,)]
A

. - = o Lo P . e
+N [Af+§A‘f—2A§A2—2Ai+23 (% AiA5+ ;A3A3) +52 A58 A1, + }

NI = o R L= ) -
- oy AT 4At 41, - 2083+ 1214343 A4 48045 40 A1, + ]} + ..

(5.2)
On minimizing (5.2), we obtain
oF 1+n
o = 0= Lts(1-21)~f " In ihic.
n, n,
-1 0 X2, 2 44 T2 -
+FTIN oo (A1 43 4124140+ )
)
., N & . - .
-p = 5;—(Af+4Ai’—4AfA2+ 2D
. A
2 -1 1_7)./70 ~9 ~4 ~o * 5.3
—2p (1_2y)2-(A1+4A1—4A1A2+ ) & (5.3)

The sum of the fourth and fifth terms in (5.3) yields a negative contribution to the average
spin wave population numbers and thus reduces the magnetization. We assume this sum
to be sufficiently small so that the integral over a renormalized spin wave occupation
number could be convergent. Since throughout this paper we are not in a position to
account for these terms we simply neglei:t them. There remains

~
~

_ i+n 4 - - o
B lin—(—2 = L4g | 1-2Y— ——— (A2 +44% 4434, + )] (5.4)
n, _ x(1-2Y) N B
with
x = BJy,. (5.5)
Thus,

~ 4 - N . ]
1, = {ex L+ (1—2Y—— A3 4443 —4434,+ D)) -1} . 5.6
i { Pﬁ[ 8;.\ x(l-—2Y)2( 1+44y 1A4x+ ..0) (5.6)
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For § = 1/2, )
X=N""! ; {exp [25(4—%6 X34 4 BL+e(1-2Y)]-137, 5.7
hence .
n, = ! ey (5.8)

- ep{L_+s,1[1—2Y—4x—1(1-zy)—2(7(2+4}4—22)~(5+ -3 g

The magnetization is given by the formula

1 d 1 [oF oF om, 1 oF
WT) = — o F=——|— + ) Rt
NS dL NS\oL on, oL NS oL
A
= 1-(NS)' Y, (5.9)
A
i. e. for the case of S = 1/2.
w(T)=1-2N"'Y 7, (5.10)
A
Quite similarly, for.S = 1
X = N"'Y {exp [3X%+ ... +B(L+e,(1-Y)]—1}74, (5.11)
i
. 1
= - (5.12)
eﬁ{L-H:;,[l—Y—x 1(1-Y) ?(3X3—12X4+51X5+...)]}_1
and .
wT)=1-N"'Yn, (5.13)
A

6. Conclusions

The comparison with the results obtained in papers [1-3] shows that owing to graphs
resulting from cross-terms in the perturbation operator S(f) and comprising one energy
denominator the renormalization factor

fs=1-Y]S (6.1)

_is corrected by a dquantity

1 - ,
Afs = — —— go(X (6.2
s = = cioyis & (62)
where the function gy(X) is according to (5.8) and (5.12)
- 4X2+16X4—88X°+...,8 = 1/2, ,
&s(X) = {3X3—12X4+51)~(5-+...,S =1. 63
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The renormalization correction Afy is negative so that it effects-the decrease of the magne-
tization within the temperature interval from absolute zero to the Curie point. In order to
show it, we had to treat the functions ¥, Eq. (3.4), and X, Egs (5.7) and (5.11), by computer
“Qdra 1204” whereas the method of calculating the magnetization is given in Appendix B.
In Tables I and IT we adduce the corresponding data and Loly’s [3] values are referred to
in parenthesis. Following Loly, we denoted by T, the temperature at which the magnetiza-
tion derivative becomes infinite (we called it the Curie temperature whereas for Loly the
Curie point is connected with the zero value of the magnetization) and we define for
brevity

Y = By =22 (6.4)
kT,
TABLE I
Simple cubic lattice, yo = 6
S ‘ 12 1
Xm 6.150 (6.144) 2.128 (2.128)
YT 0.163 (0.164) 0.368 (0.368)
X(T 0.187 0.160
(T 0.115 (0.220) 0.251 (0.265)
TABLE II

Body-centered cubic lattice, yo = 8

s 1/2 1

Xm 6.064 (6.061) 2115 (2.114)
Y(Tw) 0.160 (0.158) 0.365 (0.369)
X(Tw) 0.172 0.149

KT 0.256 - (0.340) 0.345 (0.350)

From comparing Loly and our data it can be inferred that the graphs composed of one
energy denominator considerably reduce the magnetization. For a simple cubic lattice
this reduction amounts nearly to a half. Another decrease in magnetization may be ex-
pected from kinematic graphs and the mixed ones (the fourth and fifih terms in Eq. (5.3)).
This problem is, however, very involved and it could not satisfactorily be investigated
throughout this paper.
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APPENDIX A

Let us exemplify the method of deriving the graphs from Fig. 3 for the case of § = 1/2.

By Eqs (2.4), (2.6), (2.7), (2.9), (2.20), (2.23) and (2.24) and on applying the Wick [14] and
Thouless [13] theorems, we obtain

B
Cy = — (j)dr<T[HI(r)K§7’2(0)]>c

I
|

' B
7Y ¥ L dwtv=—o=0 [ dcTlal (e} (aD)a,()

206 pyvol

x @,(0)a5(0)a(0)a 0. = = INT2Y ¥ Il s(utv—0—E)

Aga pvol

B
X [ dudat, (1)°ak (0% ,(1)°°% (1)***a(0)°*°a (0)°**a,(0)*a ()"

3 JN” Z I} i, (n,+1) (1, +1)jdt XD U(Est 2+ Ep—s— €~ E5)

Ago

—% 'IN_Z }Z Fg,a'[(na+ﬁ.+ 1) (n@—l'l' 1)-ng%a—ﬁq+lﬁe—l(—ﬁg+ 1) (Eo",'i" 1)]

x(‘ga+}.+sa AT a')—

= ""% JN—Z Z (Fg,a+1‘;+/l,g—l) (n,a+l+ 1) (ng—/l_l'l)ngnd(£0+l+sg—l—eg_8a)—lv' (A'l)

Ago

The renormalization ‘due to the dynamic interaction of spin waves yields

C,=—%JN? Y (Fj,a+rﬁ+l,g—l) (yrz+1) (ﬁg—l_l'l)ﬁgﬁa(l_ZY)—l

Ago
X (8g4 1t 8pmr—8,—8s) (A.2)
We take into consideration the relation
Fi+l,g—l = FZ;,G—(JS)_1(86+}.+89—Z—8g_80) (A'3)
and wusing the symmetry prbperty with respect to the transformation
:0".90'*—)., 9"’0"‘1: A'—) '—}‘s (A.4)
we obtain
C,=—% E I T 0-2) (Agflg+ 200, iR 0,
2 2 1 2Y ( + 4,0 l)( + A )
X(£a’+l+£g AT a')_ E (nen +2nln na‘)
JN? Z S - -
- 1-2Y ‘ Fg',a(nena+2na+lneno’) (80'+).+,89—/1_8é—8a) 1' (AS)

Ago
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We neglect the second part-of (A.5) and by Eq. (4.15) we finally have

N N
Cr= (A +243). (A.6)

Along similar lines one gets C%.

APPENDIX B

In order to compute the magnetization, we use the well-known formula

ad

1 1 BZn+2 2n+1
= —14 u" B.1}
-1 u ° E ; 2n+2)! (B.1)

n=0

where B,,,, arc Bernoulli numbers. Thus,

[

2z F:o

1 1 dAdi,da, 1 o
m ez(l;ﬂ-/m) ' S(ZTC) Z(] M//o) 1 —Sﬁé dixd,dl,
A

) ()]
1 Lol 71— ) i 731 — 3, 1 St 5,
X == . —3+15 Z(1~y,/y0)— 735 Z (A=74/v0)” +50z70 £ (1 —7:/v0)” +
Z(1=v/v0) )
(B.2)
wherein
% = BJpo, (B.3)
fs = fs+Afs, (B.4)
Z = xSfy. (B.5)
For a simple cubic lattice,
2n 2n
1 N 1 _
P J“U digdA,dl (1 —y,/y0)" " = &y JJJ dxdydz[1—% (cos x+cos y+cos z)]?? 71,
0 0

p=20,1,273, .. (B.6)
In particular [17],

2n

1
& J|Ii-
0

dxd ydz
(cos x+cos y +cos z)

- -17;(18-1—12 V2-10/3-7 JOK}[(2—/3) (\3-y/2)] = 1.516386  (B.7)
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with K(k) being the complete eliptical function

/2
K(k) = & (B3)
Ji—k*sin® x '

0

As to a body-centered cubic lattice,

2n 25
' 1
(2n)° fJI dAddydA(1—y,/po)°? " = o jff dxdydz(1—cos x cos y cos z)?? 71,
. 0 v
p=01,2,.. (B.9)
For p = 0 ([17])
2z
1 [ dxdydz 4 \/j
(2n)? ey = — K*| =) = 1.393249. ,
(2n)® ,”fl—cos xcosycosz m? ( 5 ) 9 (B.10)

0

The integrals with p = 1, 2, 3, ... can be performed by expanding subintegral expressions
and integrating term by term.
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