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Softening of the phonons in the SDW state is considered. A phase stability diagran
of the antiferromagnetic state vs the Peierls distorted state is constructed.

1. Introduction

Recently an extensive development of experimental and theoretical investigations
in quasi-one-dimensional conductors has been observed [1]. Particularly, metal-insulator
phase transition phenomena are studied. An insulating state is dué to a gap in the electronic
band and for a half-filled band the ground state is antiferromagnetic or distorted lattice
state [2]. The experimental work [3] shows the existence of the antiferromagnetic ground
state in NMP-TCNQ and Bulaevskii et al. [4] suggest that the Peierls distortion occurs
below the Néel temperature. A theoretical description of an antiferromagnetism [5] may
be done by different orbitals for different spins (DODS) method or by Overhauser spin
density wave (SDW), so the mixed state, antiferromagnetic-Peierls distortion state is
described in two ways [2, 6, 7]. A criterion for existence of one or the other state is depen-
dent on parameters of the. model [2]. In these models the gap in the electronic band is
introduced by a parameter of the Hamiltonian.

We are studying a renormalization of a phonon dispersion curve in the SDW state
and in the Peierls distorted state. (Recently, Kim [8] considered softening of phonons
in magnetic metals.) In Section 2 we describe our model and then we analyse a phonon
dispersion curve in the antiferromagnetic and a possibility of the Peierls distortion in this
phase.
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2. The model

We shall be considering a one-dimensional system of electrons in the Hubbard model
with phonons interacting with electrons. The Hamiltonian is

H = E(k)al;'aka-l' ]T’ a;+q+ak+a;;—q—ak’—+ ) Qo(q)b;bq

k.o kk'\q q
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where g, , denotes an annihilation operator for electrons with spin &, wave vector k and
energy in the tight binding approximation e(k) = —zcos k¢ (¢ is a lattice constant),
U is the Coulomb interaction coupling between electrons, b, is an annihilation operator
for phonons with a wave vector ¢ and energy 2°(g), g(k, g) is the electron-phonon
coupling [9]
h2 1/2 -
glk, q) = ( m) 2igyt[sin kc—sin (k+g)c], )]
where M is the mass of an ion, ¢ is the overlap integral for the nearest neighbours, g,
is of the order of the lattice constant.

Now, we are considering the transverse dynamical susceptibility y (g, w, T') as a response
function of a sytem on an external magnetic field. If the function %1(q 0, T) has a singularity
for a given ¢ at a temperature T,(g), then we have an instability of a system towards for-
mation of a spin density wave. Analogically, if a phonon Green function D(g,0, T) has
a singularity then a sytem is unstable and below a critical temperature there is a lattice
distortion with wave vector g. For nonmagnetic state and for the random phase approxi-
mation (RPA) the transverse susceptibility and the phonon Green function are

£ B0,

x1(q, ©, T) = N v, o €))
1- N xr(q, o, T)
D(g, w, T) = 2 02 ZQOEQ) 0 T n? C)
0 —Q (Q)+29 (Q)H (qs @, T)
where
Mg, 0, T) = Z f—‘;% G(k+qg, o +")G(k, ). )
k

In the lowest order with respect to the electron-phonon interaction

HO( TY = EC_O_" 2 ’ G
70,T)= 57 1806 DI"Glk+g, @ +0)G(k, ), (©)
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where G(k, w) is the Green function of an electron. For a half-filled band the critical
temperature satisfies the condition

1 .o 0, T, - 0
- N%T(qO’ » T) = Q)
or ,
1= H Z "k+qo(TN)“_nk(T_N) ’ ®)
N e(k)—e(k+q0)
k
and
90(‘10)—2170(‘10’ 0, T5) =0 ®
or
2 i+ 4o(Tp) — 1 Tp)
1= — k, 2 "k+gqo , 1
@) Z T el

where Ty and Tp denote the Néel temperature and the critical temperature of the Peierls
distortion, respectively, go = n/c and n(T) = {exp [e(k)/ksT]+ 1}

3. Renormalization of the phonon energy in an antiferromagnetic

In this section we consider the case when the Néel temperature is higher than the
Peierls temperature. (The case of equal temperatures Ty = Tp can only hold for a one
special value of the effective electron-phonon coupling parameter.) Below the Néel
temperature there is a gap 4 in the electronic band, which satisfies the condition [5]

U 1-2m(T)
- NZ 20,(k) e
k

[™]

. HO(Q,w)

o
I+ 1+

G167

5'
Fig. 1. Graphical representation of I1%g, w, T)

where
wy(k) = Ve2(k)+ 42, (12)

.and n(T) = {exp [w,(k)/ksT]+1}1. For the antiferromagnetic state equation (6) has
the diagram form shown in Fig. 1, where the heavy lines correspond to the electron Green
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functions {5]

G o(k ) =  Ju(k)l?  JeR)l?
S o—wk)+id  ot+ok)+is’
6. (ko) = |o(k)|? u(k)|?
- w—w,(k)+i8  o+ok)+id’
. 47 1 1
+-(e @) = 20w,(k) [w—wl(k)+i5 ; w+w1(k)+i5]’
4* 1 1
600 = o5 oyt ™ ava@TE) -
and
2_1 Jﬁ) z_l(_sﬂv’))
fu()]® = z<1+ o)’ [ = z{1 o) (14)

We calculate explicitly IT%(g, w, T) for T = 0 and for g close to the two interesting points,
g=0 and g = 7fc

M%g ~ 0, w, T = 0) s AZ————{F( . )
qx=V, o, . = —q — = T Lym——
v 2 \JPrA? \/1+A2/t2

N w?—44? 11 (2 412 1 (15
482 +44% — 0* M a2 48>’ J1+ 4% :

iy = w? i

Ho(q (=~ 7'C/C, a, T = 0) = 8S,2[ —5 tz A2 {(1— _—————— )F(n/Z, _:_)
F Ve 4+ 4%) J1+ 428

E nj2;me—e) + " o 2 i o )+0(( lc—q)?). (16)
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Above F, E, IT denote the first, second, and the third order elliptic integrals, respectively,
s = Vh?2M 2qot, s, = VH22MQ° 23,t. Tn these expressions we restrict oursclves to
a linear term in ¢ in I1°(g, @, T = 0). For g ~ 0 we consider an acoustic phonon branch
(with a velocity v) and for g =~ nfc we put Q°(g = n/c) = Q2 +0((nfc—q)?), Q2 being
a constant. The phonon dispersion curve may be determined from the equation

Q%q) = Q°(q)—2Q%II°(g, Ag), T = 0). 17y

Now, we shall analyse a possibility of the lattice distortion in the antiferromagnetic
state. We consider the Peierls distortion with a wave vector ¢ = 7/c, thus we have to calcu~
late IT1°(g = =fe, @ = 0,T)

0 - 2 1__25k(T) . 2 o2 }_ZEk(Z)
T (n/c,0, T) = Z lg(k, n/c)] 20(k) = 4s; 2 sin“ k 20k (18)
k 3
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If we denote by J(T) and J,(T) the following integrals

n{2

N G

) = 5 f dh =S (19)
0

and
/2 .
1 ., 1-2n(T) ‘_
Jl(T) = 5—7; J‘ dk sin kW s - : (20)
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Fig. 2a. The phase stability diagram of the antiferromagnetic state (AF) vs the Peierls distorted state (P)
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then the Néel temperature and the Peierls temperature, in the case when Ty is greater
than Tp, are determined by the equations

UNT) =1 : 21
and
2Ty = 1, (22)
where U = 4U, g2 = 3252/Q0.
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Fig. 2b. The phase stability diagram of the antiferromagnetic state vs the Peierls distorted state (the dashed
box in Fig. 2a)

Now, for a given U, we seek for the parameters ? satisfying equation (22). From
equation (11) we find a gap parameter 4 and thereafter J,(7p) (for Tp < Ty). From
.a numerical analysis of the function J;(Tp) we conclude that the Peierls temperature

fis 2 monotonically increasing function of the parameter g2, Hence we have an inequality
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g_(z, <_g?q (the values ?3,—&_% of the parameter? are taken at the Peierls temperature Tp

equal 0 and Ty, respectively). Thus, the values g and g of the parameter g* bound the
region of existence of the Peierls distorted state in the antiferromagnetic state.

If the Peierls temperature Tp is greater than the Néel temperature, then we examine
the stabili:ty conditions of the antiferromagnetic state in the distorted system. A procedure
is completely analogical to that presented above, only we must change suitably param-
eters and functions describing both states.

Proceeding in this way we have obtained a phase diagram for the antiferromagnetic
state and the Peierls distorted state (Fig. 2). For a given U/t and for a narrow range of

the parameter g_z/t there arise a possibility of a mixed state, the antiferfomagnétic-Peierls
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Fig. 3. The width of the region on the phase diagram corresponding to the mixed state

distorted state. A width of the region in the phase diagram corresponding to the mixed
state rapidly decreases with decreasing U/t (Fig. 3). Our results (cf. Fig. 2b) are different
from those given by Mattis [2], who showed that the antiferromagnetic state is stable

for U > g2 and the Peierls distorted state for U < g2, and the mixed phase exists only
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at the boundary line U = EZ— Moreover, our phase boundaries (in figure 2) are not straight
lines as in [2], where the functions J(T) and J,(T) were identical, because the electron-
-phonon coupling was assumed to be independent of the electron momentum.

4. Summary

In this paper we investigated the ground state of the one-dimensional system of
electrons and phonons. We constructed the phase stability diagram of the antiferromagnetic
state vs the Peierls distorted state (Fig. 2). Once more, we would like to emphasize that

the mixed state could only exist, for a given UJt, for a narrow range of the parameter gz/t
The preference of coexistence of these two phases is the higher the stronger Coulomb
and electron-phonon interactions are. We also considered a behaviour of the phonon
dispersion curve near the magnetic Brillonin zone boundaries in the antiferromagnetic
state. The results are more important as they can be easily generalized to a non-half-
~filled electronic band and a three-dimensional model.

The author would like to express his sincere thanks to Professor J. Morkowski for
helpful discussions.
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