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The role of combined crystal field and exchange effects in the magnetic propertics

of Kramers llght rare-earth compounds is studied. Results are obtained in the molecular-

- -field approximation including an external field directed along the magnetic order. As an

example, ¢erium compounds having a cubic crystal structure with tetragonal distortion

are considered. The conclusions cover a wide range of the molecular field/crystal field ratio.

The importance of the crystal field in determining the magnetic behaviour is clearly demon-
strated.

1. The molecular-field Hamiltonian

Within the framework of our simplified model, we assume the antiferromagnetic
collinear ordering along the (001) crystal axis of the cubic structure (see, for example,
[1-9]). Below the Néel temperature, Ce*? jons form two interpenetrating magnetic sublat-
.tices and all the nearest neighbours of an ion belong to the other sublattice (see, [10]).
The Hamiltonian of such a system can be written as follows:

H= ; fj‘cf‘(l)_ ,Z ‘Ilm(ji’ jm)’ )

where H(J) is the single-ion crystal-field Hamiltonian; summation in the second term
comprises all the nearest-neighbour pairs and the bilitear exchange parameter J;, is
assumed to be negative to ensure antiferromagnetic coupling.-

In order to obtain the molecular-field Hamiltonian, we perform the well-known
transformation (see: for example, [10] and Refs therein):

Jt—Jz+<Jt>°' ¥)]
where o, is the unit vector in the direction of the magnetlc ordering, and (J’) the canonical
thermal average of the operator of the z-component of total angular momentum. The

* Address: Instytut Fizyki, Uniwersytet im. A. Mickiewicza, Matejki 48/49, 60-769 Poznafi, Poland.
(703)



704

term — Z J,m(J I ,,,) gives rise to magnetic collective excitations and is neglected within

the framework of the molecular-field approximation (cf also [10, 13, 14]).

Having taken into account the occurrence of the two magnetic sublattices (4 and B)
with N ions on each sublattice, we arrive at the effective ficld Hamiltonian in the following
form:

Hye = ,ZA [Ho(D— #4551+ ZB [H (m)— #2021+ NJ(0) <J5> <T3D, 3)

where #2P is the molecular-field strength, expressed in unit of energy, <J%) and <(J3) are
the thermal averages of the operator J* at a site belonging to the sublattice 4 and B,
respectively. J(0) is the Fourier transform of the exchange interaction for the reciprocal
vector equal to zero: J(k) = ¥ exp [i(k, Rl Jim-

Obviously, in our simplified model, the following relation holds:
Ho® = af<JA(B)>’ C)]

where A, is the antiferromagnetic molecular-field constant, expressed in units of energy.
In order to study the influence of an external field applied along the magnetic direction,
we introduce the appropriate Zeeman term into the Hamiltonian (3) ([1, 2])

H, = —H,(+4x) X, ©)

where H, is the external field strength in units of energy, %)) the longitudinal magnetic
susceptibility, A, the paramagnetic molecular field constant, and A,X),H; is an extra field
acting on each ion due to its exchange coupling to the other ions, at which the external
magnetic field induces an additional moment ¥ H..

The total Hamiltonian of a single ion now takes the following form:

H(l) = HoD+H,(), ©)
where we have denoted

H() = —H,(1+,x)J; (62)

and the Hamiltonian H,(f) comprises the crystal-field term also (cf. Eq. (3)).

The Hamiltonian H(/) is diagonalized in the basis of crystal-field eigen-states (for
the details see, for example, [2, 3, 5, 13]). The simple procedure yields six energy values
and six corresponding wave functions. We can now use them to derive the thermal aver-
ages of selected magnetic quantities.

2. Derivation of the magnetic quantities

We concentrate our discussion on the behaviour of the following quantities:
(i) the sublattice magnetization per ion {J%) and {J%) together with the total magnet-
ization per ion: m = 3(<J%)+<J%)) and the difference between the sublattice magnetiza-
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tions defined as e = 3(¢(J%>—<J%)) these quantities being expressed in units of g,
g — Landé’s factor, up — Bohr’s magneton;

(i) the longitudinal susceptibility x|,

(iii) the magnetic specific heat Cy;.

Below the Néel temperature the sublattice magnetizations at zero external field can
be obtained from the following self-consistent equations:

E <1-vA(B) JzFA(B)> -Eri“(B)/o (7)

(Jfa(a)> =

A(B)

where Ef® and |[T'#®) are six elgen-values and eigen-states of the Hamiltonian H(J)

with H, put equal to zero for / belonging to the sublattice A and B, respectively; and

0 = kT-'. Obviously, without a field, we have m = 0 and ¢ = {JJ) in the ordered régime,

whereas above the Néel temperature all four quantities vanish. Derivation of the external

field-dependence of the magnetizations requires that the longitudinal susceptibility of

the system shall be available. The longitudinal susceptibility is calculated from the fol-
lowing self-consistent equation (cf. [10]):

3 (xa+x5) @®
1-3 200 +28)°
where x§ and y$ are defined as the sublattice longitudinal susceptibilities by the formula:

0 a5 A(B)>
8
Xa) = oH, (8a)

Explicitly, the equation for x§ or x§ can be written as follows (Eq. (4a) of Part I):
6

1 1
tam =57 §, (T, i ™y exp (~ EA®/60)
A(B)
(Er,i;EFJ)
: 2
1 1 .
K {_ E ' i <T@, Fri®) exp (—Eﬁ,“"/a)}
0 Z A(B) ‘
i’j=1
(Eri=Er)
> A(B) A(B)\12
2 [KTE®, J7r{ ™ o,
M exp (—E7;7/6) 8b
Zaw Z; Er,”—Ep® 7, 10) (8b)
(EI"JJ*EPJ)

where Ef(® and Ef® are the energy values and wave functions of the single-ion
Hamiltonian H(/) (/€ 4 and B, respectively). The latter, in turn, contains the longitudinal
susceptibility xy which, thus appears both at the right- and left-hand sides of Eq. 8).
For temperatures higher than the Néel point, the longitudinal magnetic susceptibility
x” goes over into the paramagnetic susceptlblllty To obtain the latter, we make use of
the same equation as that for ¥ albeit with HAand 4, put equal to zero. Having obtained
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X))» We return to the magnetizations and consider their dependences both on temperature
in the presence of the external field and on the external magnetic field strength at different
selected temperatures. To achieve this, we have recourse to Eqs (7) in which, instead of
H 5P, we insert A mt> + H,(1+ A, 3p)- Moreover, we calculate the temperature dependence
of the magnetic specific heat by having recourse to the formula (cf. Part I of this paper):

Cu = (Cia+C) ' 9)
where X
G- (240) -
a0 H:

and [ belong to the sublattice 4 or B, respectively.

3. Numerical results and their discussion

Let us first discuss the range of variability of the parameters to- which we have re-
course in our considerations. We assume that the system orders -antiferromagnetically at
T = 20K, and allow the crystal-ficld parameter By to ‘vary. In our numerical calcula-
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Fig. 1. The six energy levels of the Ce*® ion in octahedral environment versus the magnetic field strength

directed along the (001) crystal axis. The energy is expressed in units of the crystal-field parameter B,. The

magnetic field is expressed in dimensionless form: H, = gupH,|B,.a) 8 = 0 without tetragonal distortion,
b) 8 = —5 with the tetragonal distortion
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tions B, took the following values: 0.02778 K, 0.05556 K, 0.08333 K and 0.16667 K.
As known (sec Part I of the paper), B, dcfines the energy gap between the ground-state
doublet and excited crystal-field level (a quartet if § = 0 and a doublet if § # 0) (Figs la
and 1b). The four selected values of B, correspond to crystal-field splitting comparable
with the exchange, when anomalies occur in the behaviour of the magnetic observables,
as was indicated previously (see, for example, [2, 3, 13, 14]). The parameter & deter-
mining the relative magnitude of the second-order crystal-field potential is maintained
constant and equal to —5 (see [12]).

The antiferromagnetic molecular-field constant A, is estimated from the inverse
crystal-field-only susceptibility at T = Ty (the Néel temperature) (cf. [1-3, 13, 14]).

The paramagnetic molecular-field constant A, can be derived from a comparison of
the inverse paramagnetic susceptibility including the crystal-field effects and the usual
Curie-Weiss inverse - susceptibility at temperatures much higher than the crystal-field
splitting between the ground and the excited energy levels. Extrapolation of the high-
temperature behaviour of y, ! yields the following expression for A, (see [1, 2]):

Ay = kT/Cy, (10
where Cy is a factor including the crystal-field effects given by

6
=% Z= KTy, erj>|2a (10a)

where [I'y;> are the crystal-field eigen-states, and T, is the paramagnetic Curie temper-
ature. Since, in an actual crystal, T, can be cither positive, negative or zero depending on
the details of the exchange interaction, in our model calculation we have put T, = 0 and
+10 K.

Let us now proceed to a discussion of our numerical results. First, we shall briefly
interpret the temperature-behaviour of the selected magnetic quantltles in the light of
the energy structure of the Ce*3 ion.

Obviously, at zero external magnetic field, the sublattice magnetizations are equal
to each other but have opposite signs. As an example, we have plotted the temperature
variation of the sublattice 4 magnetization for B, = 0.05556 K and 0.16667 K with and
without the tetragonal distortion. As seen, the presence of the latter does not influence
the qualitative picture. For B, = 0.05556 K, the crystal-field energy gap between the
ground and excited level is equal to kTy. At low temperatures (< 5 K), there occurs
a sharp decrease in {JZ) with increasing temperature [2, 3]. In order to explain this
anomaly we have recourse to the Ce*? ion energy structure (Fig. 1). At low temperatures
the main contribution to the magnetization is contributed by the magnetic singlets arising
in the crystal-field group doublet. Therefore, neglecting the contrlbutlon from the higher
energy levels, we can write:

 <T JTye™ Brif
o= P (11)

e =Eri/0

n[\4N
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where Ep, and |I')) (i = 1, 2) are the eigen-values and eigen-states, respectively, of the
Hamiltonian H(J) (l € 4) with H, put equal to zero.

At zero temperature, the magnitude of the sublattice molecular field is larger than
that for which the lower-lying singlets cross each other (Er, < Er). With increasing
temperature the energy gap between these singlets i. e. Ep, — Er, decreases until it becomes
equal to zero. Let us rewrite Eq. (11) in the following form:

Eri1—Erz

s (T JTpe — 0 +<I’,J’F>
Joy = 2t (11a)

e ]

As the temperature increases from zero the second magnetic singlet #1so becomes populated
since Ep,—Er, is very small. Consequently, there is an increase both in the numerator
and denominator of Eq. (11a). Since at low temperatures the value of (F 2, J2T5) is larger
than that of <I'y, J°I';, the increase in nominator is smaller and {J%) exhibits a sharp
decrease as the values of 0 and Er, —Er, approach each other.

N
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s .
T

© & 0 1K)

Fig. 2. Temperature-variation of the sublattice magnetization per ion, <J%>, for the (001) direction,
Tn = 20K, B, = 0.05556 and 0.16667 K, 6 = 0 and —5. The sublattice magnetization is expressed in
units of gus

For larger values of B, the anomalies in temperature variation of ¢J%) vanish since
the magnitudes of the sublattice molecular fields are much lower than that at which the
crossing occurs (see Fig. 2, By = 0.16667 K).

It is also of considerable interest to study the influence of-the field applied along the
magnetic ordering on the temperature behaviour of the sublattice magnetizations. As an
illustration of our numerical calculations, we have plotted the results for B, = 0.05556 K
(see Fig. 3). The anomalies derived by us for T'<< 5 K occur also. As seen, the difference
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in sublattices magnetizations depends strongly on the magnitude of the applied field.
The external field increases a magnitude of the moment of the sublattice 4, whereas reduces
a magnitude of that of the sublattice B. In Fig. 3, the part of the curve {J*) lying above

80 , B=0.05556 K
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y

1 20 30 T(K),

Fig. 3. Temperature-variations of the sublattice magnetizations per ion at different applied field strength ,,
for B, = 0.05556 K, 6 = 0, —5. The total magnetization m is also plotted

the crossing with the appropriate curve m corresponds to the sublattice A, whereas the
lower part of the curve {(J*Y — to the sublattice B.

Figs. 4 and 5 show the temperature variations of the inverse longitudinal suscepti-
bility without and with an external field. As was already discussed in Part I of the present
paper, the behaviour of the susceptibility can be easily interpreted by comparing the Curie-
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~Langevin and Van-Vleck type contribution (Eq. (8b)) which always exist simultaneously
in systems with the Kramers degeneracy (see, for example, [1-11, 13, 14]). Contrary to
the crystal-field-only case, combined crystal-field and exchange effects give rise to a strong
temperature-dependence of the two contributions: directly by way of the factor 1/6, and

e 4 ;
n g T=20K, €=0K, Hy=0
607} 5=0
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sof|} .
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' 4
H e ///E
. i
<
40 // i
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Fig. 4. Temperature-variations of the inverse longitudinal susceptibility without external field for
B, = 0.05556 and 0.16667 K. The longitudinal susceptibility is expressed in units of g%u}; 0. = kT,

indirectly by way of the molecular-field energies and the matrix elements of J* in the
molecular-field eigen-states. In the presence of an external field, there occurs a charac-
teristic jump at the temperature of the phase transition. At temperatures higher than
T = 20 K, the behaviour of the inverse susceptibility does not diverge essentially from
that exhibited in the crystal-field-only case (cf. Part I). The Curie paramagnetic temper-
atures T, different from zero, give rise only to a shift in the inverse susceptibility curves
from the appropriate crystal-field-only ones [1, 2]. It is obvious that our simplified model
cannot explain all the anomalies observed in experiments on Kramers light rare-earth
compounds [1-9]; moreover, many results concetn polycrystalline samples for which one
ought to consider also the perpendicular susceptibility, as was done, for example, by Wang
and Cooper for Ce-group-V-compounds [2, 3]. However, contrary to their conclusions,
we obtain here that the anomalous temperature behaviour of the inverse susceptibility
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Fig. 6. Temperature-variations of the specific heat without external field for B4 = 0.05556 K,
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Fig. 7. Temperature-variations of the specific heat at applied field strength H equal to 2; 0, = kT,
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can be attributed in part to that of the inverse longitudinal susceptibility. The anomalies
obtained are particularly apparent for the case of crystal-field energy gaps nearly equal to
kTyi.e.for B, = 0.05556K (see Figs. 4 and 5a). The anomalous broad peak occurs in the
vicinity of the temperature at which the doublet levels cross each other. No such anomalies
occur for B, = 0.16667 K (see Fig. 5b).

The temperature variations of the specific heat for several cases are plotted in Figs 6
and 7. The peaks depict the Schottky anomaly; there appear two peaks: the first, at low
temperatures, corresponds to the splitting of the lower-lying doublet due to the molec-
ular-field; the second, at high temperatures, is related with the energy gap between the
doublet levels and those of the excited quartet or doublet. The magnetic phase transition
is reflected in the temperature behaviour of Cy.

In Fig. 8 we have plotted the sublattice magnetizations per ion against the applied
field strength H, = gupH,/B, at the temperature T = 2 K. The behaviour of the two

A
Z:
<21 T=2K, B,=0.16667K , &=0

100 200 300 400 ﬁz

—1 <4

L a

-3

Fig. 8. The sublattice magnetizations per ion versus the magnetic field strength, H, at temperature equal
to 2K, for B, = 0.16667K, 6 = 0 and 6, = 0; 6, = T,

magnetizations is strongly differentiated. Since the temperature is low, we can restrict
our discussion to the contribution due to the magnetic singlets arising from the ground-
crystal-field doublet (see Figs 1, 2). For B, = 0.16667 K, the magnitude of the molecular
field at 7 = 2 K is much less than that of the field necessary for the crossing of the lowest-
lying magnetic singlets. Let us write explicitly the simplified formulae for the 4 and B
magnetizations (cf. also [13])

_ |Er2—Er|

- {12y Iy 2)) + < 21y T35y de g -
<JA(B)> = 1+e‘|Er2"Er1[/9 ’ (12)
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where we make use of the following relations:
Ef, =Ef, =Er; Ef =EE =E,
and obviously
IFy =1r> = 1rys 0> = rfy = |r,>.
At the site 4, with increasing strength of the applied field, the energy gap |Er,—Er,| tends
to zero. When the resultant field exceeds the strength corresponding to the crossing
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of the lower-lying singlets, there occurs a sharp increase in {J%), which is due to the
change in ground state. Further on, {J%) remains nearly constant throughout a wide range
of H,.

t a site B, the applied field is directed oppositely to the sublattice molecular field.
Thus, at first, with increasing applied field, the resnltant field decreases giving rise to an
increase of the gap |Er,—Er,| (sce Figs 1, 2). {Jg) grows slowly until the applied field
attains the value at which it cancels out with the sublattice molecular field. At zero value
of the resultant field, the magnetization at a site B also vanishes and then varies slowly
with increasing resultant field, albeit in the positive region. A further sharp increase
corresponds to the crossing of the lower-lying singlets.

In the same way, we can interpret the diagrams shown in Figs 9a and 9b. However,
one has to keep in mind that at T = 10 K all the energy levels of the Ce*? ion have to be
taken into account. We present the behaviour of the total magnetizations m and that
of the difference & between the sublattice magnetizatiops.

The dependence of the longitudinal susceptibility on the applied field is plotted in
Figs 10a and 10b. The anomalies are more striking for lower temperatures, when the
main role is played by the lowest-lying magnetic singlets. The magnitudes of the peaks as
well as their positions are determined by the crystal-field parameters B, and é. The occur-
rence of these peaks can be easily intei'preted by comparing the curve for B, = 0.16667 K
in Fig. 10a with Fig. 8 and also with Figs 4 in Part I of the present paper illustrating the
behaviour of the crystal-field-only contribution to the susceptibility. One immediately
draws the conclusion that the crystal-field effects are the most important [2, 3].

It is obvious that such a simplified model as the one proposed in our paper cannot
comprise all the anomalies known from experiments on cerinm compounds (see, for
example, [2-10]). We have neglected information on a probable anisotropic contribution
to exchange coupling, more highly complicated e. g. non-collinear magnetic structures
occurring in cerium compounds [3] as well as the additional magnetic phase transitions
which take place in temperatures between 0 and the Néel point. Moreover, numerous
experiments have hitherto been performed only on polycrystalline samples and not mono-
crystals.

However, the main purpose of our paper was to study the role of the crystal field and
the influence of the exchange forces on crystal field effects. To obtain a clear picture of
this competition we have nonetheless chosen a model less simplified than those discussed
by previous authors [1-5]. It was our intention to decide which anomalies in the magnetic
behaviour can be attributed to the combined influence of the crystal field and isotropic
exchange. »

The behaviour of such systems at 7= 0 K is also of great interest, as well as the
conditions for their metamagnetic phase transitions. These two problems will be the
subject of our next paper.

The author is strongly indebted to Professor dr hab. H. Cofta for critically reading the
manuscript. Thanks are also due to Professor dr hab. L. Kowalewski for his many fruitful
remarks. The numerical calculations have been performed by Mrs B. Szczepaniak, M. Sc.,
with an “QOdra 1204 computer.
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