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A two-band model of transition metal compound is discussed. Within the Hartree-Fock
approximation magnetic, orbital and charge orderings are considered for the case of two
electrons per atom. The insulator-metal transition temperatures are given and the ground
state stability of the ordered phases is determined.

1. Introduction

Magnetic and charge orderings in an extended Hubbard model with intra and inter-
atomic interactions between the electrons have been studied by various authors [1-6]. The
possibility of insulator-metal transitions in that model has also been discussed [4-6].
The papers cited above are restricted to the case of a narrow nondegenerate band. This
is an essential limitation of the theory. In transition metals and their compounds, orbital
degeneracy and interorbital electron interactions necessarily play a very important role [7-9].

Owing to the presence of five d orbitals per atom, the 3d band is strongly degenerated.
Although the crystal field can lower the degree of degeneracy, it does not remove the latter
completely.

During recent years, the problem of orbital degeneracy has been dealt with repeatedly
[10-12]. Those considerations bore on the simplest model including degeneracy i.e. the
two-band Hubbard model, and the authors studied the stability of the ferromagnetic
state for the case of very strong intraatomic correlations.

The possibility of a very interesting effect of interorbital interactions, consisting in
orbital ordering, was predicted on the basis of the two-band Hubbard model by Roth
[13, 14] for the case of one electron per atom. This is two-sublattice ordering. In either
sublattice, the electron occupy predominantly one of the orbitals. Simultaneously with
orbital ordering, the system exhibits for T = 0, ferromagnetic ordering as well [13-16].
From the analysis of the model T > 0 performed in the Molecular Field Approximation,
it results that the orbital ordering disappears at a temperature higher than the Curie
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temperature [16]. As we shall show further on, in the case of two electrons per atom
situation is entirely different: magnetic ordering and orbital ordering exclude mutually.

In this paper, we consider a simplified two-band model of transition metal compound
taking into account intra- and interatomic interactions between the electrons.

We shall deal primarily with the case of N atoms and 2N electrons: n = 2 (n — the
average number of electrons per site), as being of essential interest to us with regard to
the posibility of insulator-metal transitions.

We carry out the analysis of our model employing the standard technique of Zubarev’s
double-time temperature dependent Green functions [17] and decoupling the two-particle
Green propagators in the Hartree-Fock scheme [4]. We shall be considering ferromagnetic,
antiferromagnetic, charge and orbital orderings in the model. We shall moreover determine
the stability of the ground state of the system by performing a. comparison of the ground
state energies of the various ordered phases.

2. Hamiltonian, and general formulation

The Hamiltonian for the model is given as

2 HCiorCiay+3 Z Ul nl,nl,

ijay i 77
ag’
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with
U = (UyBo, oSy + U8y, )o0;+ Wify
KE = Kby b0t Tk @

y = *1— orbital index, & —spin index, T;} — hopping integrals between the same
orbital states of nearest neighbours, U, U’ and W,,, — intra- and interatomic Coulomb
interactions, respectively, K — intraatomic exchange interaction, J,y — interatomic ex-
change interactions, p-— chemical potential, f;; = 1 if 7,j are nearest neighbours and
fij = 0. otherwise. Here, for simplicity, we neglect the hopping integrals 77;”" connecting
electrons in different orbital states. We assume moreover that the crystal field integrals
are independent of y, i.e. T = T;;77" = 0.1

~The equation of motion for the Green function Gif,(®) = €Cisy; Cjoy e for the
system described by the Hamiltonian (1) is of the form
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1 Preliminary analysis of this model for the case J = 0, U = U’, has been published by the author [18].
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This equation contains higher order Green functions, to which we apply the following

decoupling (which corresponds to the-Hartree-Fock approximation):
&Ni-oCicys C_,a » = <nj- n)Giny (w)—<ef i~ ayCiay) Gijpy ’ (@),
KNiaiCiays Clayd = <nw;>Guw (),
«"w,cm, C,a w)) = <"1¢1> .m (w),

+ . A
«clal'“ciln?clo‘y;! cja"y'>> ol b <clo'111cla‘71>Gla_.];;( )'

(4a)
(4b)
(4c)
@“4d)

Furthermore, we assume that the system is magnetized in the x-direction rather than in

that of the conventional z-axis. In this case
ot = <l =0,
where of, are the components of the electron spin operator gy
U?y = ‘1‘; ci:yci—ay’ a;’y = -1 i;“‘:;yci-ay, G'fy» = %; aci:rcicy"
With fegai‘d to (5), we have
(et imayy = Ol ariayys  LCimCiary = LG ayCimapd-
On applying Eqs (4), (7), and on performing the Fourier transformation
Ciay = N™1% Y Chay oxp (ik * Ri),

tjyy (60) N- ! kzk GZT;czyy’(w) eXp (lkl - Ri_' ikZRj):v
152

where N is the total number of lattice sites, Eq. (3) takes the form

) Suadordyy 1
@+ DG @) = 2 1 2 U
kik,

+ (2 W K) <cl-:m'— yckza'-'y>} G;c.:-’kl —k;yy’(w)
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here E}, W}, JJ" denote, respectively, the Fourier transforms of T}, W}, J}}.
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For the correlation functions (C,:;,Ckzv,,,)'we ‘assume, after Kishore and Joshi [4],
‘that ”

o+ o +
<ck1ayckza’y> = <ck1¢7ck10’7>6k1k1 + <cklo'yck1 +ch’-y>5k;,k1 +0» (10)

where Q is half the smallest reciprocal lattice vector. This approximation amounts to
considering only charge and spin density waves with wave-vectors ¢ = 0 and ¢ = Q.
We introduce the following definitions:

1 1
n';' = N Z <c;y_cic'y> = N Z <cl-:a"ycka'1>a (11)
ic ko

1 i
Any = N Z <ci.:-xyciay> €Xp (lQ . Ri) = E Z <C:+Qayckay>s (12)
ic Ed . . ko . .
2 N . = | n
= N <o-iy> cXp (lq . Rl) = N <ck+qayck—a'1>’ (13)
S ko

1, denotes the average number of electrons per orbital y; 4n, is the charge order parameter;
and my is the magnetic order parameter for these orbitals (q 0 corresponding to ferro-
magnetic and g = @ to antiferromagnetic order).

With regard to Eqs (10) and (11)—(13), Eq. (9) becomes

(w+pu —Ez+Ag)GZk vy (@) + ByGris, ‘yy’ (w)

5kk'5ao"6w’
N

— AYG7% 0 fryy (@) + BYGi L sryy(@) = o (14)
where we have used the notation
A) = 3 [(U,+2zW"—zJMn,+ QU =K +2zW* 7" =2]" )n_,], 15)
Ay =3 [(U,—2zW" +2J™)An,+ QU —K—2zW'" " +2J" " )4n_,], (16)
BY = 3 [(U,+zJ™)my+(K+2zJ"")my "], a7n
= 3 [(U,—z]")ympy+(K—2J"")mg7], (18)

z is the number of nearest neighbours.

3. Selfconsistent equations and the density of states

A. Charge or orbital ordered states
In these states m, = my = 0. Since Gi% 20,44y = Gipyy» We derive from Eq. (14) the

following form of the Green function Gjp,,(w):
o'o' (a)+u E}o— AD)du+ AQdr+o.x

(@ —wp,) (@—4,)

kk ‘yy( ) s (19)
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where
of, = —p+ AL +3 (EL+Ef+0) £ Aiy (20)
Ay = [3 (B} —E}. 0" +(4D°T [e3))
Henceforth we shall consider but those bands for which
El.o = —Ej (22)

Once the Green function (19) is known, we can calculate the correlation function L ayChor?
required to determine the number of electrons per atom and charge order parameters 4n,

1 ]
(C:'ayckay) = m I dof(w) {6kk'[6(w — W)+ — ml-:'y)]
+6l:+Q,k’ L [5(&)—&),:,)—5(&)—60,3)]} o (23)
VEL+(4})?

fl®) = [exp (Bo)+11*, B = (kgT)™.
By having recourse to Eqs (11)—(12) and (23), we obtain equations for n and 4n,

where

2 .
n=ng+n_g = N Z [f(a),"y)+f(a),;)], (24)
ky
dn, = — %;\_4:9 EWCO;'_,) -
ky
7 .

B. Ferromagnetic state
In the ferromagnetic state mj =‘An7 = 0. On solving Eq. (14) for Gig.,,(»), we
obtain
. 5 (4 —Ey'—A" 5001—By5_ .
GZZ'W(CO) = ﬂ_ ( H k = 0) + oY ~o0
2n (cu—wk,) (w—wk,)

; (26)

where
of, = —p+Ej+ A} B, @n

Hence the correlation function is

24

1 -
<CI:: a'ycka7> = 57; J dw{ [5(60 an wky) +3 (CU - wl:-y)]aa'c'

-0

. [5((0 i wl-c.y) . 5(60 - wl-:y):lé - aw'}akk' .
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By this equation and Egs (11), (12), we obtain the equations for # and m},

2
o X,Z (i) @], @9)
ky
2 - +
my = N Z LSf (wk?-) ~f (wky)]' 29)
%

C. Antiferromagnetic state
In this state 4n, = m} = 0, and from Eq. (14) we have

1 @+p+E;—ADoubor ~Bpx 0,0 aa

Gy (w) = — . 30
9rk®) = on (@t n—Ef= A2 @+t Bl— 4D~ B’ b
The poles Giy.,, are given by
0y = —p+ A5 £V (ED +(BY’ . (31)
The equations for n and my are given by
2 . .
n=x ) How+flen)] (32)
ky
my = 256 ) @)= f(@k) _—
N Dy — Dpy
Tk
The density of states per atom for all types of order have the form
1 ol ~ :
o(w) = p [5(w-—wk,)+6(w——a)k,)] (34
ky
with a),,i,, given by (20), (27) and (31), respectively. Eq. (34) shows that the number of
states per atom in each band is equal to one. If E},o = —E] the bands o, and wy, are
separated by the energy gaps
Ej, = 24}, (35)
EF, = 2B}-D,, (36)
E.Y = 2B}, | 37N

where D, is a bandwidth of E} band. The difference in centre of gravity of the bands w,,
and g gy

0 — 4 (—1)
El,—l — Ao )—Ao .
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Henceforth, we shall restrict our considerations to the case for which
(i) the interelectronic interactions are independent of the band index 7,

(ii) ) ) ! n1+n_1 = 2, (38)
(i) I =0

The case of two electrons per atom is of essential interest with regard. to the possibility
of insulator-metal transitions, whereas the assumption (iif) was introduced by us in order
to restrict the number of parameters.

We denote

U,=U, zW"=W, W 7=W, z2J"=]J. (39)
For n given by (24), (28) or (32), we can easily obtain the solutions of Eq. (38). With
regard to (39), we get
n,=n_.,=1 p=4,, (40)
with ' :
| Ao = Ay = 437 = 3 (U+2U' 420 +2W' —K = ).
Now Eqgs (25), (29), (33) for the order parameters take the form

1. charge or orbital ordered state

| AL\ th[3 BVED +(4)7]
An, = — 2 N & AL 41
YTUN L Ve g

2. ferromagnetic state

1
mh = Y T AEL+ED] @

k

3. antiferromagnetic state

., B} th E}?*+(BY)®
""5=7$Z [Z/z;_(&;;)_e)] 5
where
Ay =3 [(U+T=2W)An,+Q2U' —2W’' ~K)4n_,], 44
B} = } [(U+J)m}+Kmg 7], 45)
B} = 4 [(U—~Jym}+Kmg"]. (46)

If Eq. (40) is fulfilled, then obviously E{_, = 0, and for Ey1y >0, Ey—qy >0 the
system behaves like an insulator. The lower subbands w,, are then completely occupied,
whereas the upper subbands w,:; are empty. If one of the gaps E,, or E,_;, or both
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simultaneously decrease to. zero, an insulator-metal transition takes place. As it follows
from Eqs (35), (37), the insulator-metal transition temperature T,; for the charge and
antiferromagnetic ordered states is equal to the long range ordering temperature. For
the ferromagnetic state, T, is determined by 2B} = D, and obviously is always lower
than the Curie temperature 7,.

4. Discussion of the solutions for two electrons per atom

We now proceed to consider two particular cases
A. identical bands (E{" = E{™V = E,, for all k),
B. zero width of one of the bands (E{™" = 0, E{" = E)).
4.1. The case of identical bands
4.1.1. Charge or orbital ordering

Here, the selfconsistent equations (41) for the order parameters take the form

(e A z»th {3 BV(ED® +(Asdn,+ A dn_ )%} 75
N V(ED? (A, dn,+ A An )
where .
A, = JU+T=-2W), A, =3QU' —K=2W"). ' (48)

At sufficiently low tem_pératures Eqs (47) can have other non-zero solutions besides
4n, = 0, thus
(i) 4n,dn_,>0; (ii)) 4n,>0, 4dn_,<0.

The first pair corresponds to the charge ordered state and the other pair to the orbital
ordered state. .

Let us consider these solutions for T = 0.
() Dn, = 4n_,; in this case we obtain from (47)

A +A 1 :
2 (49

1=
J(Ek) +(A; +A) (Al
whence, for the square density of states for the bands E,
1
P(E) = 7 if $+D<E<3%D, (50)
=0 otherwise,
‘we have
D D -1
4nd = — sh , if 4,+4, <0, 49a
’ 2(A1+A2>[ —2(A1+Az):| e L

4n) =0, in the other case.
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(iiy 4n,= —Adn_,;

D > I
An® = — sh if 4,—A, <0 (51}
’ 24, -A)L 2A4,-4)] S

4n) =0, in the other case.
In the case (i) the average occupancy number of both orbitals in one sublattice is.
higher than in the other sublattice (charge ordering). The case (ii) coresponds to alternate
[4n,l
)
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Fig. 1. The charge ordering parameters |4n,| as functions of the temperature T, for 7 =0);1.5UD;

3.0 (I); 6.0 (IV); B = —2(A;+4,) in the charge ordered state and B = 2(4;—4,) in the orbital ordered
state
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Fig. 2. The charge ordering parameters |4n,| as functions of the bandwidth D, for = 0 (I);0.10 (II);

0.33 ()

orbital occupancy: in one sublattice the electrons occupy predominantly the y orbital
and in the other sublattice the (—y) orbital (orbital ordering).

As the temperature rises the parameters 4n, gradually decrease. At a critical temper-
ature (which is identical for both subsystems y) a phase transition occurs from charge or
orbital ordered insulator to metal. This temperature, for the charge ordered state, is
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given by
T 0.57 D 5
=—exp| ——|,
©= ks 7| 2d;+4y) 2
and for the orbital ordered state by
T 0.57 [ D ] ’ ' (53)
o =——¢exp| ——|.
ky 2(A4,—-45)

For the case considered above, in the orbital ordered state the number of electrons per
atom in both sublattices is the same, since 4n, = An_,. The situation is different for bands
of different widths (see § 4.2). In Fig. 1 we show the variation of the charge ordering
parameters |4n,| as functions of T for various fixed values of the bandwidth D, and in
Fig. 2 — the variations |4n,| as functions of D for various fixed T.

4.1.2. Ferro and antiferromagnetic states
For E] = E, " = E,, Eqgs (42) and (43) have the form
(i) ferromagnetic state
1
mj = — Z th { B[E,+(U +Jymi+ Kmg ']}, (59

N oA
&

(i) antiferromagnetic state

my, = U Dmo+ Kmg? Z th {3 B V(EY +3 [(U—Jym)+ Kmy T’} 55)
Z 2N JEV +E[(U-Dmb+Kmg >

These equations likewise to Eqs (41), can have nonzero solutions m’ = +m™7 # 0.
Ferromagnetic coupling K > 0 causes that the solutions m” = —m™" are always unstable
with respect to the solutions m” = m~%. We therefore consider only the case m* = m™7,

At T =0, for (5), we have
G) my=1, fU+J+K>D,

m} = 0, in the other cases. (56)

D p 1! '
i) mh = h . 57
(i) mg U—J+K[S U—J+K] ©n

From (56) it follows that at T = 0 in the ferromagnetic state the. discontinuous ferro-
magnetic insulator — paramagnetic metal transition takes place for D = U+K+J.
In the antiferromagnetic state, the situation is different. Here, the ordering parameters mg
vary continuously from 1 to 0 as the band-width D grows from 0 to co. Hence at T =0
in this state no insulator-metal transition can occur. From (54) and (55) we obtain eqna-




629

tions for the critical temperatures T, and Ty

O L "

Y UrJvK" N Z cos? h(3 B.Eg)’ G

o _ U=J+K " th G ByEs)

(i) 1= N Z E, —. 59
k

‘Thvese equationé, for square density of states (50), give

(60)
(61)
04 08 12 X
. .. q 2kgpT, q )
Fig. 3. Variation of the Curie temperature { y. = UTK and the insulator — metal temperature

2keTym ' : D R A .
= as a function of the bandwidth =—-0o0 ] F, for —— =0. - 0.
(”,‘ U+K) ' ( T ) o K =09 s 03 an

. . U—-J+K ,
Eq. (61) has been obtained on the assumption = < 1. In the ferromagnetic
state, the insulator-metal transition temperature Ty, is given, for a square density of

- states, by o f o,
DBy U+J+K_ DBy

—— = ———— Incosh — . |
2 D (62)
Hence, for D < U+ J+ K, the ferromagnetic insulator first goes over into an ferromagnetic
metal at T, and then into a paramagnetic metal at T,. The variations of the Curie temper-
ature T, and the insulator-metal temperature T, as functions of the bandwidth, for two

. A
fixed  values are shown in Fig. 3.
S U+t ;
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4.2. Zero width of one of the bands
4.2.1. Charge or orbital ordered states

If one of the bands is very narrow, we obtain from Eqs (41) that for 7 = 0 in the
charge ordered state

An?_l) = 1,
A And,+ A4, 1
Ay, = — 2 ;\1’) 22 ., if —Aydnly> 4y, (63)
—i V(B + (A1 400+ A7)
whereas in the orbital ordered state
An?_l) = ""1,
—(AlAn?I)—Az) 1 .
A"?n = — , if AzAn?I) > A,. (64)
By —i V() +(A,dnly~ A;)°

Transitions to the nonordered metallic state occur in the temperatures T, and T,,,
respectively, which are given by

BeoA;+4 _ 1 th (3 BeoEx)
aa Al(ﬂcoAl +4) + A%I}co 2N Ek )
k

(65)

BocAi—4 _ 1 th (3 BooEr)
A1(BooAr—H—A3B0 2N E,
k

(66)

As it results from (64), in the orbital ordered state too the average number of
electrons per atom in the one sublattice (2+4n,+4n_,) differs from that in the other
(2—4n, ,—An_,). However, the difference in average electron occupancy of the atoms in
different sublattices is smaller than in the charge ordered state.

4.2.2. Ferromagnetic state

At T = 0, in addition to the solutions m, = O there exist yet other pairs of solutions.
For a square density of states (50), one has

miY =1,
D=1, for U+J+K>D (67)
cand
mSi D =1,
my!) = s e U+J+K < D. (68)
® T p-U-J’

Contrary to the situation of case § 4.1. here ferromagnetism is possible, for T = 0, even
if D> U+J+K. In this case E{" = 0 and the system is metallic. For D = U+J+K,
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at T = 0 a ferromagnetic insnlator-ferromagnetic metal transition takes place. Moreover,
by (68) the wide band subsystem exhibits but incomplete ferromagnetic order (m§" < 1).
The Curie temperature T, is determined as

B(U +J)—4 B 1
U+J) [ﬁc(U+J)—4]—K2ﬂc TN Z cos” hGs B.Ep)’ ()

whereas T, — by Eqs (42) (in whlch we get E,‘"" = 0) and the equation (U+J) m{®
+Km§™ P = D,

4.2.3. Antiferromagnetic state e
At T = 0 the nonzero solutions for md have the form m§ ™V = 1

1 _ - J)m(1)+K 1
Mg (70)
x/E,,+% [(U-DmP+KP
whereas the Neel temperature is given by
(U-0) [B(U~J)—4]—-K*By 2N E,

For this type of order we obtain no new qualitative conclusions in comparison with
the case of identical bands.

5. Internal energy of the system and stability the ordered phases

The internal energy per atom of the .systcih described by the Hamiltonian (1) can be
expressed by the one-particle Green furction [4, 17}

=S 1 z f (@+u+ ED (G (0+ 1) G~ ie)] f@)dw.  (72)

kay

By insertion of the corresponding Green functions into this equation we evaluate, as in the
one-band model [4, 5], the internal energy of the system for paramagnetic, ferromagnetic,
antiferromagnetic, charge and orbital ordered states in the case of two electrons per atom.
1. Paramagnetic state

B, = o o z LAED, 9

2, 3 Charge or orbital ordered states
2(El)z+(A )
Y
o VEY +(4p?

E,, = Ao— [%ﬂ\/(Ez) +(4p)?], (74)
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4. Ferromagnetic state

- do—t Z Bymy— + z B [f(E£+BS)+f(E” — B,

5. Antiferromagnetic state

Ep =

1 2ED?*+(BY)*

Ag— — —— e
° 2N J(Ez2+(B )?

th [} B V(ED*+(BY)].

(75)

(76)

When deriving E, we had recourse to Eqs (19), (26), (30) as wéll as to the selfconsistent

equations for the order ‘parameters, and the equality E}.p = —E{.

Eqs (73)—(76) in the case T = O define the ground state energy per atom E°, for the

states analysed.

We have
0 2 o
= EP = A0+ E Ek’
. » _4 A
ky(Eg?<0) .
2,3. E®, = Ap— 1 \ Z(Ez)2+'(A1An,+;A2'An;;)2 ¥ &
, 2N LN(ED +(Asdny+ Azdn-)"
4. E} = Ao—iz [(U+J)m5+Kmf,_”]m",,
Y
g i SR o T
S E% = Ao— 1 2AED* +[(U—-Dympy+ Km "]

2N «/(Ez)2+[(U_—J)mzﬁxmg”]f'

an

(78)

(79)

- (80)

Hence, for the square density of states (50) and on the assumptlon of Dy = D( n=D,

we obtain’

1.

D
Bomhmg
D ‘ ,
E? = Ay— —cth [4’)-—]
2 —2(A,+4,)
D D
E? = A, cth [-—E]
2(4,—A,)

Ep = Ap—3(U+J+K), for D< U+J+K,

= E, for D > U+J+K,

D D .

(81)

.(82)

(83)

(84)

(85)
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Comparing E° for these five cases we are able to say which of them has the lowest
energy for given values of the parameters and thus to decide what type of order the system
as a whole will exhibit, )

In the particular case of zero interatomic interactions, we obtain that the ground
state of the system is always antiferromagnetic, whereas in the case J = 0 the paramagnetic
and ferromagnetic states are always unstable in relation to the other types of order-
ing.

In general,

() if —2(4,+14,]) < U+K+J the ground state is charge-ordered for 4, < 0 and
orbital-ordered for 4, >0,
(u) for — 2(4;+14,])) < U+K+J the reglons of stability of the ordered phases are

shown in Fig. 4.

UK ) pararmagnetic
metal

antiferromagnetic
insulator

ferromagnetic
insulator

el 1

- -F 0 7 2 _J
o U+K

Fi‘g.é}. The phas_c; boundaries between ordered states for —2(A;+|4;)) < U+K+J

For U= U',K = J =0, these criterié simplify considerably; in this situation, the ground
state is antiferromagnetic for U < W W', charge ordered for W, W’ > U, and orbital
ordered for W > U > W'.

5. Final remarks

In this work we considered a two-band extended Hubbard model taking into account
‘intra- and interatomic 1nteract10n between electrons. We investigated primarily the case
of half-filled bands (n =

In a two-band Hubbard model only antiferromagnetic ordering. is possible for this
case. Here we obtained that the system can exhibit ferromagnetic, antiferromagnetic,
charge or orbital ordering, according to the values the interaction parameters. Both
charge and orbital ordering is due to interatomic Coulomb interaction of the electrons,
and their mutual stability depends on the magnitude of interorbital interactions. On the
other hand, ferromagnetic ordering is due to interatomic exchange interactions.
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In the case of antiferromagnetic, charge and orbital order the system is nonmetallic
in the low temperature phase and an insulator-metal transition occurs simultaneously
with the transition to the disordered state. On the contrary, for the ferromagnetic state the
insulator-metal transition temperature is always lower than the Curie temperature.

In this work we investigated in detail two cases (i) identical bands, (/i) one of the
bands very narrow. There are important' differences in the behaviour of the system for

the two cases.
We found that the properties of the ferro- and antiferromagnetic orderings in the

case (j) are very similar to those of the one-band extended Hubbard model [4, 5], whereas
in the case (if) —to those of the modified Zener model [19, 20]. Moreover, in the case
(i) in the orbital-ordered state, there exists additionally charge-ordering (contrary to the
case (§)) i. e. the number of electrons per atom in the one sublattice differs from that in the

other.

In the present case of half-filled bands, magnetic and charge or orbital orderings
exclude mutually. For n # 2 it follows from the ground state analysis of the two-band
Hubbard model [21, 22] that the situation has to be quite different. In that model, if n = 1,
the ferromagnetic and orbital orderings occur simultaneously and the orbital ordering
temperature is always higher than the Curie temperature [16].

The author wish to acknowledge helpful discussions with Dr R. Micnas. He should
also like to thank Professor J. Pietrzak for a critical reading of the manuscript.
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