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FRAUNHOFER DIFFRACTION IN A MEDIUM WITH UNIAXIAL
ELECTRIC ANISOTROPY

By M. WaniA
Institute of Physics, Technical University, Szczecin*
( Received April 21, 1977)

A plane clectromagnetic wave diffracted by an arbitrary aperture in a medium with
uniaxial electric anisotropy is considered. The optic axis is perpendicular to the aperture.
The diffracted field is examined in the Fraunhofer region. TM and TE type fields are considered
as incident fields. In both cases the diffracted field at the Fraunhofer region possesses properties
of a field obtained by the superposition of TM and TE type fields.

1. Introduction

The tensorial dependence of the electric and the magnetic induction vectors on the
electric and the magnetic field strengths vectors is a very distinctive feature of an aniso-
tropic medium

D; = gye;;E (1.1

ij™je

B; = popi;H;, 1.2)

where g; is the dielectric permittivity tensor, u;; — the magnetic permittivity tensor of
a medinn.

We shall limit ourself to a medium with uniaxial electric anisotropy. This medium has
one distinguished symmetry axis called in optics — the optic axis. The tensors &; and p;;
are of the form:

sij = 60(5ij—cicj)+ﬁecicj, (1.3)
sy = i (1.4)

where £° and ¢° are the dielectric permittivity constants in the direction perpendicular and
parallel to the optic axis respectively, ¢ —the unit vector along the direction of the
optic axis.

One of the main dielectric permittivity tensor ¢;; axes has been choosen as the optic
axis, which in the cartesian coordinate frame x;, X,, x5 coincides with the ox; axis.
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2. The electromagnetic Huygens principle for a medium with uniaxial electric anisotropy

The electromagnetic Huygens principle for a medium with uniaxial anisotropy has

been derived by Wiinsche [7].
In our considerations in which the optic axis coincides with the ox; axis of the cartesian

coordinate frame, we shall write it in the following form
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where » = {n,, n,, ns} is the unit vector in the direction of the vector R which connects
the integration point Q on the surface with point P in which we calculate the eleciromagnetic
field

R
R = E s R = {xl_x,u xz_xIZa x3—x;}, (23)
a = (°nl+e%n2 +e%n3)12, (2.4)
ko = o Veops, k° =k, (2.5)
Kji = Se(5ij—cicj)+800icj, C = {0, 0, 1}. (2.6)

3..The Kirchhoff integral

Let us consider a plane screen with an arbitrary aperture fully immersed in a medium
with uniaxial anisotropy in such a way that the left and right half-space are filled with
this medium. Let us further assume that Kirchhoff’s boundary conditions are satisfied
on the screen B and the aperture 4 (Fig. 2).

&jpgNpH(Q) = €;,,N,H,(Q)  on the aperture, 3.1

€ipqN ELQ) = &;,,N I,Efli)(Q) on the aperture, 3.2)

&ipaNpELQ) = £;,,N,H,(Q) =0 on the screen. 3.3)
X1

|

Fig. 1. The geometry and notation used in the derivation of Eq. (2.1) and (2.2). The dashed line indicates
the direction of the optic axis
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In accordance with (3.1), (3.2) and (3.3) we assume that the tangential components of
the field on the aperture 4 are equal to the tangential components of the incident field.
The tangential components on the unradiated part of the screen B vanish.

In diffraction problems such as the diffraction on the aperture or on the half plane
we must integrate (2.1) and (2.2) over an infinite surface which includes the screen and

Fig. 2. Geometry and notation used for the study of Kirchhoff’s diffraction by apertures in plane screens

aperture surfaces S, and closed hemisphere Sy with the radius R extending to infinity.
This hemisphere is further designated as S,, (Fig. 1, 2).

The integration over the surface S,, gives the zeroth-contribution in the observation
point because the electromagnetic field in a medium with uniaxial anisotropy satisfies
infinity the radiation conditions [8].

Kirchhoff’s conditions (3.1)-(3.3) and the radiation conditions thus limit the integra-
tion surface in the integrals (2.1) and (2.2) only to an aperture surface A.

In such a formulation the integrals (2.1) and (2.2) are often called in literature Kirch-
hoff’s integrals, and the diffraction problem solved using this formalism is known as the
saltus problem [6].

4. The electromagnetic field in the Fraunhofer region

If we remove the observation point P to infinity i. e. if we consider the field in a distant
region, we can assume the following approximations called Fraunhofer’s approximations
Ry’ ,
R~ Ry— — = Ry—w', 4.1
R,
R~ ~ RyY, (4.2)

I3
X=X} & n Ry, X,—x3 & Ry, X3—X3 X n3Ry, 4.3)
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where
RO = {xl.a X2, X3}, (44)
v = {x{, x5}, (4.5)
and vector » has here meaning of unit vector in the direction
RO
= —, (4.6)
Ro

Using the approximations (4.1)-(4.3) to Kirchhoff’s integrals and after a few simple
transformations we obtain the electromagnetic field in the Fraumhofer region in the
following form:
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where C and D are constants
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5. The properties of the diffracted field in a medium with uniaxial anisotropy in the Fraunhofer
region

In the Fraunhofer approximation for the diffracted field some terms appear, which
are multiplied by two different exponential factors, exp [—ikoumry] and exp [—ik°mr].
Using these approximations in the form of a sum of two components

Ej = Ej+Ej, (5.1)
H] = Hj+Hj, (5.2)

where E', H', contain exponential factors exp [— ikoonyri), ES, HY factors exp [—ik®myril,
we can demonstrate the following properties of the field (5.1) and (5.2):
(a) transversality towards the optic axis ¢ = {0, 0, 1}

¢,Ei #0, ¢H;=0, (5.3)
Bl =0, ¢HY} =0, (5.4

(b) transversality towards the direction of wave propagation n (the direction of the obser-
vation is given by the vector — n)

nE #0, nH: =0, (5.5)
nEl =0, nH}=0. (5.6)

The electric field strength vector E' has longitudinal components in the direction of the
optic axis and in the direction of diffracted wave propagation as well. The magnetic field
strength vector H" has the component in the direction of the optic axis but is perpendic-
ular to the direction of wave propagation #.

~ Comparing the properties of the field (5.3)--)5.6) with well known properties of TM
and TE type plane waves in a medium with uniaxial anisotropy we can state that the field
with index I, in the Fraunhofer region assumes a character of the TM type plane wave,
the field with index IT assumes a character of the TE type plane wave. These two waves
propagate in the same direction » but with two different phase velocities.

~ The properties (a) and (b) have been obtained without any restrictions in relation to
the incident field. They are thus valid for an arbitrary incident field.

6. The diffracted field for a given incident field

Let us now consider the diffracted field in the case when the incident field takes the
shape of the plane wave [9]. The incident TM field

E™ = k3e% j5u+V,Vsu, (6.1)
HJTM = —iwsososjk3Vku, (6.2)

u = exp [i(klx, +Kk,%, +k°13x3)], (6.3)
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where
=Veky, K=k, DBHB+IE=1.
After some simple transformations of (4.7) and (4.8) we obtain
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The incident TE field N
E}E = i0ﬂ08jk3vk19, (6.6)
HYE = k2% ,,9+V,Vs9, = 6.7
9 = exp. [ik° (T, x1 + 1, + 13x3)]- (6.8)

For the diffracted field in the Fraunhofer region we have then the following expressions:
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where

7, = k9, KD =kP =k, k¥ =k% N={001}.

7. Conclusions

If we study the diffracted field in the medium under discussion at a sufficiently large
distance from the diffracting screen, i.e. in the Fraunhofer region, then the total field can
be parted into the TM-type field an TE-type field. These two types of the field are generated
by an arbitrary incident field. In this region these two fields propagate with different phase
velocities and they are the plane waves.

Analysing carefully the expressions (6.9) (and 6.10) it appears that in the direction
of wave propagation # which coincides with the direction I of the incident wave on the
aperture plane, we find only one type of field, namely this, which is represented in the
incident field.

The polarization state of the diffracted field can be found to be conserved because
the direction / is the ray direction of the incident wave i. e. the direction of energy propa-
gation.

It is very easy to transformi the results described here into the well known results
for the isotropic case [4, 5] by putting in (4.7) and (4.8) &° = ¢° = 1.

The author expresses his gratitude to Professor B. Karczewski and to Docent J. Pety-
kiewicz for discussions and helpful suggestions concerning this work..
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