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The present paper provides formulae, following the close relationship between the
photocounting statistics and speckle, for the probability distribution of the intensity (integrated
intensity) in a multifold speckle pattern with a coherent background and for its moments of
arbitrary order, including partial polarization and taking into account arbitrary temporal
and spatial spectra of light and arbitrary detection times and areas of the photocathode.
Corrections are obtained to the correlation area of the speckle caused by the interference
of the coherent background with the speckle paitern in the fourth order and by partial
polarization. A number of formulaefor special cases are also deduced, which have not been
used in the speckle theory till now. A possibility of introducing the statistical properties
of the incident light is outlined. The obtained formulae may be applied t6 exclude the
microstructure from the macrostructure for a rough surface.

—

1. Introduction

Recently, great attention has been paid to the statistical properties and correlation
properties ‘of the speckle which can serve as a source of important information about
surface roughness and can be nsed in image processing as well as in metrology and stellar
interferometry [1-3]. As a model of speckle statistics, the negative exponential intensity
distribution and its multifold generalization have been used [4, 5]. Sometimes the probability
distribution of the intensity has been calculated exactly on the basis of the exact character-
istic function and the Fredholm integral equation for finding eigenvalues of the correlation
function [4, 5]. Such multifold formulae are useful for analyzing the speckle produced
by light composed of a number of spectral components [5] or of a finite spectral bandwidth
as well as for analyzing the integrated speckle with a detector of a finite aperture and
finite resolving time. As a consequence of the fact that rough surfaces are depolarizing
light during the scattering process, the effect of partial polarization must be included in
the description [4]. Also the question of the correlation area of the speckle pattern has
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been discussed in [4]. As to the case of the speckle pattern with a coherent background,
the model of narrow-band noise with one coherent component (the modified Rician
density) has been used in the speckle literature till now and it is stated in [4] (p. 29) that
even this model has not been generalized before to describe arbitrary polarization states.

In this paper we would like to show that there are formulae in the literature describing
this as well as much more general situations obtained in connection with studies of the
photocounting. statistics of the superposition of coherent and chaotic fields (for a review
of contributions to this field, see [7, 8]). Following the analogy between the photocounting
statistics and the speckle, we are able (i) to give approximate as well as exact formulae
for the description of multifold independent partially as well as fully polarized speckle
fields with a coherent background, (i) to give exact and approximate formulae to describe
the multifold partially polarized speckle pattern (without a coherent background), and
(iii) to propose some corrections to the correlation area of the speckle as a result of the
interference (in the fourth order) between the speckle pattern and the coherent background
and also caused by partial polarization. In general, we can describe effects of finite resolving
time and detection area of a photodetector as well as arbitrary temporal and spatial
spectra of light.

2. Formulae describing the superposition of M-fold polarized speckle fields and a coherent
background

We start withi a simpler case when the speckle fields are assumed to be fully polarized,
also the coherent component is fully polarized and both polarization planes are in coinci-
dence. For simplicity we consider stationary and homogeneous fields.

It has been found (e.g. [9]) that the characteristic function describing such a super-

“posed field can be written in the form
M 2
Cexp isly = H (1 —isCT) ™" exp [M +isC) (1—ni)], .1y
) 1- lS<I chl>

A=1

where is represents a parameter, I is the intensity in the speckle (or rather the integrated
intensity if a detection process with real detectors having finite detection area and resolving
time is considered), {I,;,> is the chaotic mean intensity in mode 4 (eigenvalue of the Fredholm
integral equation with the second-order correlation function as the kernel [9, 4, 5D, <{I,;>
is the mean intensity of the coherent component in the mode A and x, deseribe shifts
of corresponding frequencies of the chaotic and coherent components, e.g. for the Lorentz-
ian spectrum of chaotic light and one coherent component it is x* = sin2(2/2)/(Q/2)?,
Q being (w,—wo)T (0, and o, are the frequency of the coherent component and the
mean frequency of the chaotic component, T is the photodetection time). Such formulae
containing the frequency shifts can be applied to heterodyning a chaotic source with
a coherent local oscillator. The intensities (I;,> and {I ;> play the role of mean numbers
of photons (n14;> = {Ju>TS and <{n.» = I ;DTS if I is interpreted as the integrated
intensity as mentioned above, S being the detection area. '
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The probability distribution of 7 is then given by the Fourier transformation applying
the residunm theorem

P = 2n)~* of Cexp is1'> exp (—isI)ds

. exp( e Z 1— 1 L™
\Ich}.> nz' ™1
{ni}=0 i=1
M
\ | I-B ) ( l)m”(nn'l_mu)'
X expl —
<Ich/l’> J m 'n '
A=1 5N mytf=ny uFEi
REA

ngtmutl oy B
" ( Teny Tenar ) (I-B) , I>B, PI)=0, I<B 2.2

eprd = Lo B!

where

M M M
B = <Ic> (1_K2): <Ic> ol Azl <Icl> and Kz = /1;1 <Icl>K§/l§1 <Ici.>'

For chaotic light, <I;> = 0 and the well-known result is obtained (e.g. [4)

M

M~2
P(I)=Zexp< <11 )_ T ;
: chs? 1T CLas>- Aod)

\Y%
o

P =0, I<O. (2.3)

The moments of P(I) are expressed in terms of the Laguerre polynomials Lj(x) [9]

k

k— . . 2;
I* = k! ( ]f J;' Z <I”“> m<— ——?;m;”) (2.42)
i cha )

are for x; =1 (0, = wy)
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M
Of course, in all cases <I) = Y. (I >+ L) = I>+<{yy. For chaotic light we
A=1
have {I,;> = 0 and

IS =k Y T dad™ (2.40)
Ig m;, =k A=t

i=1

and if M = 2 [4]

' <Ic >k+1_<1ch >k+1
"y = k! Ly Y™ = kIl k2l
I E an D™ K enzy oSS

my +ma=k

For k = 2, {I%) = 2<I)*, where I} = {lep1) +<{Lopz)-
These rather complex formulae can be simplified in a broadband limit where T ga>
= (I,>/M are the same, which leads to [0, 9]

_p\M-1)/2 20 ‘
D) M (I B) exp(—1+<I°>K_ BM)

(2.4d)

T I\ oy
) _ 1/2
X Ip—1 (2[K|M [<I°>g ‘>B)]— ) I>B, PI)=0, I<B (2.5
ch/

or to the simplified expression if k = 1 (w, = o) when B = 0[11]. Here /y is the modified
Bessel function. The corresponding moments are obtained in the form [10, 9]

: BF 4 DN e I KM
kN = ch M-1 .
i Z(k—j)!l“(HM)( M > 7 ( Ten ) G
j=0

and for k.= 1 [I1]

kN _ k"___ <Ich> g M—-l(____ <IC>M
<”“HHM<M>” aw )’ (2.60)

I'(k) being the gamma function. These formulae follow directly from (2.4a,b) if an
identity for the Laguerre polynomials is applied [9]. For k = 1,2

v 1
Ay = A+ gy, I =D+ »]'\_4(<Ich>2+2<1ch> A >K?). (2.60)

All these expressions are generalizing the well-known expressions following from the
Rician distribution [4] if M = x = 1 (in [4] (2.6b) for M = 1 is given in terms of the
confluent hypergeometric function). They can bz applied to describe multifrequency
or finite spectral bandwidth speckles with a coherent background or speckles with a coherent
background integrated by a detector with a finite aperture and resolving time (a definition
of M for this purpose will be given in Sec. 4).



563

For the speckle alone, {I,> = 0, and we arrive at the expressions used before

M M—1
pa)=(M) d exp(— IM),' I>0, PD)=0, I<0, (27a)

Uar/. (M) Ly
. o T(k+M)
A% =Ly TODM° (2.7b)
Iy = I y? (1 ¥ %) (2.7¢)

3. The superposition of M-fold partially polarized speckle fields and a coherent background

Denoting ¢ as the angle between the polarization direction of the coherent component
and the positive direction of the x-axis of the main polarization system of axes (x, y), we
can deduce all formulae describing this case from the characteristic function [12-14]

{exp isl) = ﬁ (1—is/E)~ ' —is/F;)~!
i=1

i‘si'<1’civ1>’€§~ is<1c).2>k:i
X €Xp : + :
1—is/E, 1—-zs/F,.1

where {I;,) = <Ic4> cos® @, {320 = {I;) sin® @, E; = 2/(1 +P){Lopz, Fy = 2/(1 =P){L03,>
and P is the degree of polarization. For P = 1 and ¢ = 0, we have (2.1). We also as-
sume the polarization cross-spectral purity expressing independence of the coherence
and polarization properties [12, 14].

An analogous expression to (2.2) for this case has been obtained in [13]. It is of rather
complicated structure and therefore we do mnot repeat it here. Calculating the moments,

we arrive at
B¥J Z H
a5 = k! E,™E; "™
(k"J)' myin,!

E (mp+nz)=j

'-I-‘isB/M] i (3.1)

X L?n;,( - <Icz1>’€§Ez)L?M( i <Ic).2>K%F}.) (3.22)

or

I { ] N
I*% = k! E I I = L ELTF Lo (— Lea D EDL, (—<Iesa>F) (3.2b)
AR
JZ:[(m;.'*'nA):k

if K, = 1. For P =1 and ¢ = 0 we obtain (2.4a, b).
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For chaotic light we derive

M M
<Ich}.>
P(I) = i E IE
L) ZHUCW <Ic“>{ ran *)H -5

M
+Flexp(—IF,1)| I B } I1>0, PD=0, I<0O (3.3)
E},l'—Fl
x

providing (2.3) for fully polarized light. The moments are

I* = k! y H E;™F;™ (3.4a)
M

I (matna)=k
P
giving (2.4c) for P = 1. If M =1, we have

(1/E)k+1 —(1/F)k+1

TN (3.4b)

(IS = k! g E""F™" = k!
mtn=k

and (I®) = k1 I,)" for P = 1.
In the broad-band limit we obtain by using the residuum theorem [12]

M ( (I__B)I/Z

E = .
P = Im im>—1n> exXp (—F(I‘B)"EK2<Ic1>T‘F'€,2<Ic2>)

o

< rwim| (= 2 e 2 (Fr)
[(n+M) (K] <> E-F

n=

X1, om-1Q2FI| () I=B)Y?), I=B, PI)=0, I<B, (352)
or for ¢ = 0 [13]

P(I) = (EF)"(I-B)*™ ™" exp (= E<I.>x* —F(I-B))

- 1 . E = g 1 LM_1<E2;¢2<16>>
8 ZF(H+M)|:( ~F) ( )] r(n+2m) " E-F )’
» 0

n=

I>B, P(I)=0, I<B; (3.5b)

here E = 2M[{I;>(1+P), F = 2M[{I,>(1—-P) and in (3.5b) {I,> = 0, <Icl> = {I>.
Expression (3.5a) for M = 1 just provides that formula asked for in [4].
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The corresponding moments are [12]

k k J - 1 Fi
N ‘k'Z(k T yr(l'l'M)F(H'M—l)( )

i=0
X Ll‘i[_1(_EK2<Ic1>)LBJ"[-—i1(—FK2<Ic2>) (3.6a)_
and for ¢ = 0 [13]

J
B Iipi Ir(j+M-iy (F : M-t 2
R (M)Z(k J)' W+M)< )Li (—Ex*(I:)). (3.6b)

i=

From (3.6a) for £k =2

Py =D+ »—(<I,,.h> s L ety <t 1+P;ﬂ¢>. (3.60)
For o, = w, we have also from (3.6a)
I* = kIFT* Z . F> DY =EU )L (—FU ). (3.6d)
' TG+MI(k+M—-D)\E e e ‘

i=0

Equations (3.5) and (3.6) provide thie generalization of (2.5) and (2.6) following from
P=1and ¢ =0.
Excluding the coherent background by putting {I,> = 0, we arrive at [12, 13]

(EFy"

PI) = F(ZM) ~Yexp (~FI)F,(M, 2M; (F—E)I)
B TEI/Z(EF)M 1 M-1/2 E+FI F"'EI
T (ﬁf) exp(“ 2 > M-/ (T )
>0, P)=0, I<0 3.7

with the following moments

k

I*y = ! F~¥ Ifr('+M)r(k+M—' f—j' (3.8)
" PO i)Y " N\E) |

j=0
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here F; is the confluent hypergeometric function. For P — 1 we arrive at (2.7a,b) and
for M =1

EF i
P(I) = — (¢xp (—ED)—exp (~FD))

- s [o0 (- g ) e (-
TRy TP\ T @+ Py p~< (1-P) <IJ>>]’

I1>0, P(I)=0, I<0O, (3.9a)
kN . Lp—k k; T\ i (1/F)k+1_(1/E)k+1
{I*y = kIF Z (E) = k! _W (3.9b)
i=0

giving (I*) = kWI,)* for P = 1 (in agreement with (3.4b)).

4. Determination of M .,

As has been mentioned, M can be chosen as a number of lines in the spectrum of
laser light used for producing the speckle [5]. However, taking into account the influence
of the detector, i.e. its finite resolving time and detection area, then I should be interpreted

T
as the integrated intensity | [ I(x, £)d*xds and M can be determined by the comparison
S o

of the exact moment {7?) with the approximate one given by (3.6¢). The exact second
moment has the form [16,9, 12, 13, 17]

1 +P cos 2.
ch> <Ic> B

Iy =<+

1 T2S2 f

S

F1 (4.1)

where

’

IVch(x1 xz, t —tz)|2d2x1d2x2dt1dt2,

Q—-_\‘l-.]

Fi= e 25’2 ijf?ch(% Xgs ty — 1)7e(Xo — Xy, 1, — 17X, A7 X, dt dt; (4.2)

here y,, and y, are degrees of coherence of the chaotic and coherent components respec-
tively and (I,,> and {I,) represent the corresponding mean intensities multiplied by 7
(for a more general case of non-homogeneous fields, see [17]). Thus comparing (4.1)
with (3.6¢) we arrive at [16, 12, 13]

1425, [<{Ie») (1+P cos 2¢)/(1+P%) @3)
f 71+ 2 Y[ g)) F (1 +P cos 20)[(1+P?) *
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For I,y = 0, M = 1/,#; in agreement with [20, 21, 18, 19, 4]. It can be shown that in
general M > 1. The dependence of M on Tz, (t, = 1/T" being the coherence time and I’
the half-width of the. spectrum) for the superposition of coherent and chaotic fields has
been demostrated in [16] while its dependence on S/S. (S, being the coherence area) has
been obtained in [18, 19, 4].

The expression (4.3) enables us to deﬁne the terms of the coherence time, area and
volume more generally than it is usual for chaotic light [17] and consequently to define
the correlation area of the speckle pattern more generally. Assuming the so-called cross-
spectral purity of light enabling us to separate the temporal and spatial coherence
(X1 — X3, T) = (%, —X2)y(r)), we obtain for the speckle correlation area

S fls+2(<1c>/<1ch>)f1s(1 + P cos 2¢)/(1 +P2)

S, =—=8 — ——————=, 4.4)
M 28K ) (1+ P cos 28) (14 P7)

where

© +

1’ - - - = 1 .
Fis = 5z Jf [yen(: — %) ?d>x,d%x, & 5 J [P, y)]zdxdy,

+ o0

_ 1
Fis = G Re J]‘ ?ch(X1—x2)?c(x2 x)d? x1d Xy N = S Ji[ Re {7alx, )’)V (%, y)}dxdy, (4.5)

-0

being (x,y) = (X, —X,). Thus (4.4) provides corrections from the interference between

the coherent and chaotic components and from partial polarization to the usual definition
+ o0

S, = [f [7en(x, »)|2dxdy [18, 19, 4] following from (4.4) for <I,) = 0. A detailed discussion

of the corrections arising from the interference can be found in [17].
The influence of the finite resolving time of a photodetector can be discussed quite
similarty [20, 9, 17]. In this case M is determined by (4.3), where

+oo

1 2
Fir = i’— ive(v)]"dr,
+ co

abe Syl
Fir =% I Re {ya(r)ye ()} de (4.6)

stand for ¢, and ¢, and 7, = T/M similarly as for S, given in (4.4) [17]. Also combined
temporal-spatial effects, especially when the cross-spectral purity condition is not fulfilled,
can be considered [17].

It should be noted that the above given formulae are exact in the narrow- and broad-
band limits when M = 1 and M — o respectively. Nevertheless they can be used as
approximate for all T and S, all temporal and spatial spectra and arbitrary polarization
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states [21, 22, 16, 23, 5], the effect of which is included in M through ¢, and 7, in the
form (4.3) (£, = 157 11.81 = F15.917). Particularly, it has been found in [23] that the
accuracy of these formulae increases as the ratio {I,>/{I,> increases and P decreases
and it is better than 19 if I[KIy) >4 and P = 1. However, for purely chaotic light
the maximal error is about 15%. In these studies the photocounting distribution p(n, T)
and its factorial moments (J*) have been discussed. The relationship of p(n, T) for chaotic
light (for the superposition, cf. [23]) based on the approximate formulae and more exact
calculation published in [22] is in agreement with the relationship of P(I) based -on the
approximate formula and the exact calculation as given in [5]. More accurate results
should be based on the recursion formulae [24, 25, 14] obtained for p(n, T) and its factorial
moments.

Till now the mostly used tool of investigation of the statistical properties of the speckle
has been P(I). However, the more convenient quantity should be the photocounting
distribution p(n, T). The all formulae for it corresponding to those given above for
P(I) and <I*) can be found in the literature quoted here, particularly in [9, 10, 12, 13, 15].

Finally we note that we have considered coherent light to be incident on a rough
surface. Assuming fluctuating incident light it is sufficient to substitute {(I,> — (I, I’
(respectively {I.) — <{I>I') [26-28] with the additional average over I’ with the probability
distribution P'(I") corresponding to the incident light. This generally leads to rather com-
plicated expressions, but for the chaotic limit we easily obtain from (2.7b) for M = 1
if also chaotic light is incident that {7*) = (k1)><I)* [27-29]. Other approaches to describe
the effect of a random medium have been proposed in {30-31].

If the temporal and spatial spectra of light together with T and S are known, we can
determine M and the equations (2.6¢) (or (3.6¢) if P and ¢ were known) provide a quadratic
equation for {I.) after elimination of {J,> (the speckle) knowing <I) and <{I?) from
an experiment, i.e. measuring the photocounting distribution p(n, T) or the intensity
(integrated intensity) probability distribution P(I) and calculating the first two moments
or performing a correlation experiment with the help of two photodetectors, we can
exclude the microstructure of a rough surface from its macrostructure, which is an important
technical problem. As additional literature relevant to tackling this problem, the mono-
graph [32] can be given. At present these questions are under consideration.

‘The author thanks Professor G. Hesse and Drs L. Wenke and W. Schreiber of
Friedrich Schiller University of Jena for interesting discussions.
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