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REMARKS ON THE MICROSCOPIC PROOF OF STABILITY
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It is assumed that the expansion coefficients of the ground-state autocorrelation functions
with respect to inverse squares of the frequency, should be positive, Then it is shown, that for
normal Fermi liquids, the first two of these coefficients are positive if the Pomeranchuk
inequalities for Landau amplitudes hold. These inequalities allow for an independent micro-
scopic proof of the stability conditions for normal Fermi liquids, for comparison with Leggett’s
proof. The method of' calculating autocorrelation functions in the quas1homogeneous limit is
also- presented.

1. Introduction. Statement of the problem

The Pomeranchuk inqualities [1], for Legendre amplitudes of the effective qua81-
particle interaction (i.e. Landau parameters), were obtained in the phenomenological
Landau approach [2], from the stability condition of the ground state. This simply means
that the ground state has the lowest energy. Unfortunately, this energy cannot be expressed
immediately in terms of quasiparticle quantities in the microscopic approach to Fermi
liquids [3-5]. Hence; the inequalities [1] cannot be obtained there, in the same way as
for phenomenological approach. Leggett [6] demonstrated how to obtain these inequalities
in the microscopic approach. They follow from the negativity of the quasiparticle part
of static autocorrelation functions, which is caused by their spectral representation and
the stability of the ground state.

The ground-state autocorrelation function, [6], can be written as follows

zwnoléknOIZ )
(CO + i5)2 - w,%o

K (ko) =] ©)

* Address: Instytut Fizyki, Politechnika Wroclawska, I-9, Wybrzeze Wyspiafskiego 27 50-370
Wroclaw, Poland.

(545)



546

Here w,, is the excitation energy of the n-th state, &;,, is the transition element between
the ground (0) and the n-th state of the k-th Fourier transform of the operator ¢, § = 0F
and o is the external frequency. According to (1), all terms near =%, s = 1, 2, ... in the
series expansion of (1) have to be positive. These inequalities, as we shall show, also lead
to the Pomeranchuk inequalities [1], and do not impose, at least for s = 1 and 2, any other
constraint on the Landau parameters.

According to paper [4], the autocorrelation function for normal degenerate Fermi
liquids, for an arbitrary &, can be represented for |w|, kv < Ey, where Ey denotes the
Fermi energy and v-the velocity on the Fermi sphere, as follows

Kolko) = Kg = 3 &%5,(ke) [3,,5 = 3., p k)3, (ko) 65 @

Let us now define the symbols used (for details see e.g. papers [4] and [6]). K7 — is the
nonquasiparticle part of the autocorrelation function, which is equal to the (uncommuta-

tive) “o limit” lim lim of K (kw);
©w—+0 k-0

8, (ko) = a*3(E,—E,)u(pk) [v(pk) — 0] ™",

where E, denotes the one-particle energy, p —the unit vector directed along the momentum
p and a — the discontinuity of the density of particles on the Fermi sphere, 0 is the Dirac
delta function. The p-summation in (2) is over momentum space and the spin variable,
&9 is the vertex ¢ in the w-limit and f,, ,(kw) is the four-point function for the energy-
-momentum transfer w, &, [4], cf. also [6]. If the system is invariant with respect to spin
rotation, i. e. if the total spin is conserved, then the spin, i. €. traceless in spin space, vertices
appear together with the spin-exchange part of f, ,» (kw) whereas spinless ¢ — with the
spin-direct part of this function. If the system considered is invariant under rotation in
momentum space, then for £, = AUpD Y (D)7, Where 7 is the unit matrix, or one of the
Pauli matrices in spin space, then we have on the Fernn sphere, &2 = 1Y;,(p)/a,[f], where
a depends on / and 7, and functionally on £, but does not depend on m, as well Ky — K [f],
as a consequence of the Wigner-Eckart theorem:. For conserved quantities é, dpy = d,

=0, [4]. It should be noted that formula (2) is a result of transformations of a purely
algebralc character, [4]. Note also that fhas to depend on | p| = p such, that f'¢an be changed
appreciably only if the p — variation is, at least, of the order of the Fermi momentum, po,
in order not to introduce a torrelation length much greater than %/p,. Note also that for
I'> 1 the function f(p|) Y;,(p) varies very quickly on the Fermi sphere arnd that the condi-
tions of applicability of the formula (3) can be stronger than |w|, kv < Eg.

Using the relation between the function £, ,., (k) in the @ — limit and this function
itself and applying the relation for £° for-above £, one can rewrite (2) as follows (cf. [4, 6, 7).

K (ko) = K§+(va*[agy) Yim(P)Q(ke)

2

X {[1 = FQUk)] ™} p.p Y 90 = Kot (:" )S,m(kao. 3)
Sl

Here v denotes the density of states on the Fermi sphere, F is the spln-exchange or spin-
~direct part of the dimensionless effective interaction for the spin and spinless vertices &



547

respectively, the bracket {...>, ,., denotes a double average over spherical angles connected
with the momenta p and p’. Note that the expresswn in the curly bracket denotes the p,-
P — matrix element of the operator inverse to 1 — FQ(kw), where Q(kw) is defined by

O(kw)g( p) = {v(pk) [co— v(pk)]-l} g(p), whereas Fis a mnondiagonal operator in this
representation, depending on F(pp); the multlpllcatlon of operators assumes here the
average over spherical angles connected with an intermediate momentum. The operator F
is determined by its Legendre amplitudes, called in this case Landau parameters. They
are defined as follows

A,

F(pp) = Z @I+ DEP(pp). “4)

Note that the symmetry of this problem allows the choice of k along the z-th axis, without

any loss of generality; in such a case (p k) = kz Such a choice will be apphed by us

further in this paper.
Accordmg to (2), for normal hqu1ds Ké(kco) is a homogeneous function of zeroth
degree of the variables @ and kv, i. e a function of kv/w as a single variable. Putting there

k=0 we ﬁnd that
Kw - y _2(0.nolffk='o,nol2
L (om0l

Since K"’ has to be w-independent, we get that if &4—o,0 # O then either w,o = 0 or

w,o = Ep. Hence
t 2 _ 2
K? N E |ék—0,n0| <0’ (5)
Do

n

where the prime denotes that the sum was restricted to such states with & = 0 that @, > 0.
The above relation for &x-q 0 could serve as an additional characteristic of admissible
E-operators. It seems that our previous characteristic and the present one lead to the same
class of operators. '

Now, putting o = 0 in K.(kw) we find that

‘ " 2o’ _ N 2omol’

n n

R \ )
- lim = Ki+Je,, Je<0, (6)
k-0 Wy

n

where the tilde confines states » such that lim w,, = 0. Note that in transformation (6)
k-0

the homogenelty of the function Ké(kco) has been wused. Passing to the autocorrelation
functions (3) and applying the fac_t that J, < 0 one can obtain all Pomeranchuk lnequah—
ties [1] in a microscopic way [6].
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2. Transformation of autocorrelation functions; inequalities of the first rank

Let us transform the function S,,,(kw), defined by the identity in formula (3). Expanding
Q(kw) in S),(kw) into a power series with respect to R = kv/w, next expanding
[1 —FQ(kw)]"* and taking into account our rules of operator multiplication, after some
algebra one can find that

t

kZl (nlz=1 o nzl)l

3] 2s—1

Sw(ke) = 3, R* Y@+ 3

s=1 =

=

@K

X <22s—tYzm(l’;)F(IA’IAh)ZTF(I;d;z)2'52. F(i’k-11;k)zzknm(13k)>p,p1 ) = 21 R*Qgy.  (T)
Here the prime over the sums over 7, ... m; denotes the restriction to n; +n,+ ... m = ¢,
Di =[x, Vi i), XP+¥7 427 = 1, and the symbol <...>,, . denotes the average over
spjerical angles of all momenta: p, p, ... p; as we see, the operator notation was
rejected by us in this formula. Note that the terms near odd powers of R vanished in (7)
as a result of the odd parity of the function under the symbol <...>.

According to formulae (1) and (3), (7) Qg >Oforalls =1,2,...and/ =0, 1, 2,
...|m| < 1. Let us discuss this inequality for s = 1. In this case we have

2V D)*D, + 2 Y DYF(PP)Z Yin( B 5 0 > O (8)

Taking into account the well — known recurrence properties for associate Legendre
polynomials. P{", (cf. e. g. [8]) one can write for normalized spherical functions

ZYlm(IA’) = Clel+1,m(IA7)+Cl-l,mYl—l,m(IAJ)? (9)
where
l+ 1 2_ .2 1/2
Clm = M . (10)
. Ql+1) (21+3)

and the phases of spherical functions are chosen here in such a way that Y3, = ™ Py,
with P-normalized associate Legendre polynomials. Substituting (9) into (8) and applying
the addition theorem for spherical functions one finds that (8) is equivalent to

(1 +F)Ch+ A+ F_)Cy 0 > O, (11)
which does not impose any other constraint on the Landau parameters in comparison to
inequalities {1], i. e.

1+F, >0, [=0,1,2,.. (12)
The conditions (11) together with the positivity of compressibility and spin susceptibility
are equivalent to (12). In order to show this statement, let us observe that inequality (11)

for I = m passes into (12), but for / = 1, 2, ..., and apply the formulae for the compre-
ssibility and spin susceptibility.
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Let us verify whether the consideration, that ¢ is a linear combination of ¥, with
different / of the same parity, does not lead to inequalities for F; stronger than (12). Note
that without any loss of generality one can consider only linear combinations of ¥;,, with
fixed m, based on the Wigner-Eckart theorem, because m describes irreducible representa-
tions of the rotation group around the k-axis. Moreover, the application of this theorem
to the full rotation group shows that the autocorrelation function in the w-limit splits into
the sum of autocorrelation functions of £-operators with definite /, and that these functions
are m-independent. On the other hand, the quasiparticle part of the autocorrelation function,
an analogue of S, (k) in (3), does not split into the sum of autocorrelation functions with
definite /, there are also some transition terms. Taking ¢ in the form

3 X0 YinB), (13)

with [ restricted to odd or even numbers, and performing transformations similar to the
previous ones, we find that the quadratic form

IZ; Up(ms) (X, Xp/a1.0,.), (14)

where

2s—1 ¢ t

Up(ms) = YD)z Y@+ 2, L (2 o 2

t=1 k=1 n=1 ne=1

X <ZZS—tYl:<z(ﬁ)F(ﬁ1;1)z’{l F(I;k—-lﬁk)ZZle’m(i’k)>p,p1 e Pl (15)
has to be positive definite for any m and s. The application of the addition theorem for
spherical functions and formula (9) shows that (15) depends on m only through Cy.,
and that there appear C;..,,, with varying /" but with fixed m. This allows for a slight simpli-
fication of the notation, namely: to omit m’s in C;..,,, keeping in mind that all inequalities

have to be fulfilled for any m.
For s = 1 (15).takes the form

Undm1) = V(D)2 V(D)) + <2 Vi DYF (BB VZ Yien(D) .- (16)
The application of the formula (9) together with the addition theorem for spherical func-
tions shows that Uy, (m1) = O unless |/—/'| = 0 ot 2. The term Uy(m 1) has been calculated
by us; using the same methods one can also obtain Uj;,,(m1) = U, ,(m1). The inequa-
lity corresponding to the positive definiteness of the quadratic form (14) can be rewritten
as follows
Y {VLU+F )C+(1+F,-)Ci(]

1=|m]|
+ ViV 204+ Fr o DC G + ViV (1 4+ F - )C- 1G5} > 0, an

where V; = X,/a,. If the summation variable is changed in such way that all terms under
the sum are proportional to (1+F,,,), one can rewrite (17) as follows

ha l (L+Fi1 ) (VCi+ Vi 2Cryq)® > »0, (18)

I=|m
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which does not impose any new restrictions on the Landau parameters. On the other
hand, if Vy;, = —ViC)/C,4 1, then (18) vanishes even though the Pomeranchuk inequalities
hold. This means that (18) is only positive semidefinite even though 1+F, > 0. ‘Since
lim (C, . I/C,) =] for any finite m, thus the modulae of all Vs, fulfilling the aboVe condi-

l>o0 .

tion, are asymptotrcally equal each other for l > 1. This corresponds to the operators 6“’
bemg some distributions of the variable p rather than its regular functlons The cons1dera-
tion of such £ is rather physically meaningless. On the other hand, for &° not represented
by convergent series, the quasiparticle part of the autocortelation functlon as well as its
series expansion do not exist in the mathematlcal sense.

5™

3. The inequalities of the second rank and concluding remark

Let us discuss the expression (14) for s = 2. It is clear that the special choice of X; # 0
only for [ = [, leads to the second-rank analogue  of the .ineqality (8). Simultaneous
application of formula (9) and the addition theorem for spherical functions shows that
Uy, (n2) = 0 unless i—1I' = 0, 2 or 4. Moreover Uy (m2) = Uy (m2). From the formula
(15) we find that for s = 2 the following terms of the sum are possible

(@ withe¢=1, k=1 n =1,

(b)y with t=2, k=1, n =2,

© withtr=2, k=2 n =n,=1,

(d) with =3, k=1, n =3, )
(e) with t =3, k=2,n =2,n=1,
() with t=3 k=2n=1n=2
(@ with 1=3, k=3n=n=n3=1

All these terms could be written down explicitly without any serious difficulty. In order to
obtain Up(m2) one should add the terms (a)-(g) to.the term {Y(p) 2* Y,_,m(f))>1,:. The
list (a)-(g) and the prescription for the average values <...>, ,,—,. in (15) give an almost
explicit expregsion for all above terms. Hence, we will not reprodiice” here all terms
(a)-(g) in such an explicit form. Let us write the term (f) as.an .illustrative example.
We have: -

<ZY1m(P)F(PP1)21F(P1P2)ZZYz m(P2)>p PP ‘, ‘(19)

The calculation of integrals such as above, needs the subsequent application of the formula
(9) and the addition theorem for spherical functions. This last, together with (4), give that
the eigenvalue of the operator F in the state with definite / is F;. In order to systematize
calculations of the type (19) let us exploit the analogy between formula (9) and the random
walk process. Namely, the multiplication of Y, by z corresponds to transition to /41
with the weight C; and to /—1 with the weigth C;_,. The subsequent multiplication by
z corresponds to the next step of the random walk. From this point of view all integrals
(a)-(g) correspond to the four-step random walk, because . n;+ ... 7 +2s—t =4 for
s = 2. If I’ = [+4 then there is only one possible four-step way from / to /+4, with the
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statistical weight C;C;, 1C;; ,Ci1 3 and, for the integral (19), with the multiplier £, { Fiy,.
Hence, the contribution of integral (19) to U,y (m2) is given by C,CpiyCrin CriaFrig Fiis.
Let us analyze the contribution of integral (19) to Uy 4o (m2). It is easy to see that there
are four possible paths leading from I'to 1+2. They can be denoted as follows

(=), (=) (F =), (F++), (20)

where (+) denotes a forward step, whereas (—) denotes a backward step. Assuming that
initial step of each path is on the left-hand side of each bracket (...), and that we start
from the state /, one can obtain the statistical weight for each path. For the paths listed
above by (20) we have respectl\/ely

Cl 1ClCl+1s Cl Cl+1= Clcl+1a C'lCl+1Cl+2 : (21)

The F-dependent factor is determlned s1multaneously by the I-state near the operator F
in each integral (a)—(g) on each of the above listed paths. For integral (19) we have respec-
tively

FioFy, Fi o \F Fro Frao, Frg(Fry, ) 22)

Multiplying now the statistical weights (21) by the corresponding factors.of (22) and taking
the sum of such products, we obtain the contribution of the integral (f) (19) to Uy ;.o (m2).

Let us Iist, for completeness, the, paths beginning at / and ending at the same point
after 4 steps. We have the following paths:

(=4 4), (S+—4), (F++-)
(H==+) (b =+ =) (++ =), - (23)
with the bfqllowirng corresponding statistical weights:
Cl ch 1 Cl 1s Cl 1Cl
CL1CF, C Cz Cz+1 (24)
The factors cOrrésponding to these Weights in the' iy’n‘tegral (17) will have .the form
Fl 1Fl 29 Fl 1F19 Fl IFl= Fl+1Fb Fl+1Fl7 Fl+1Fl+2 (25)
In order to obtain the contr1but1on of (1 9 to U, (m 2) one should multlply (24) by the cor-
responding factors (25) and form the sum of products. It is clear, from the above considera-
tions, that the contribution of the first right-hand side term in (13) to Uy s (m2) is equal
to CiCyyy Ciy Ciys, Whereas the contribution to U, (m2) and U (m2) are equal to
the sum of weights (21) and (24), respectively. The contributions of the terms (a)-(e)
end (g) to the mentioned matrix elements can be calculated quite similarly as for the term (f).
Note that the listed paths and their statistical weights have a universal character for the

integrals (a)~(g). The developed methods can also be useful for the calculation of Uy, (ms)
for s > 2. ) o
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Performing the calculation sketched above, one can rewrite the condition of positive
definiteness of the quadratic form (14) at s = 2 as follows

3, l {[CICH TP T a2+ CL Gl Ty T VP + T(T 41 CF + T CF_ )P W]

1=|m
+2C,C T4 (T4, G + T 1 G YWV
+2C,Crs1 T 1 Tis 2T 3Ca 2+ T 1 €L ViV
+2C,C111Ci42Cru3 T 1 T4 2 D13 ViVinad > 0, (26)

if the sum over / of V7 is greater than zero. In formula (26) T} denotes the Pomeranchuk
variable, 1+F;. Changing the variable / into /+4 and /+2 in the second and third term
in the square bracket respectively, and into /+2 in the first term proportional to ¥;Viy,,
one can transform (26) into

Y T4 2[CiCre A TVi+ (T43Ci 5+ Ti 1 Co Vi 2+ Cri2Cri 3 T4 3V ]2 > 0. (27)

t={m|

This inequality does not impose any additional constraint on the variables T;.
In such a way we have proved that Pomeranchuk inequalities are sufficient to preserve
the positivity of terms proportional to R? and R* in the autocorrelation functions. Tt is
rather impossible to prove in a general way that these inequalities are sufficient to preserve
the positivity of terms proportional to R*, s = 3, 4, ..., even though it is rather doubtful
that inequalities of rank greater than 2 impose any additional constraint on Pomeranchuk
variables. Hence, one can assert that the phenomenological and microscopic approach to
Fermi liquids, equivalent from the point of view of equations, cf. [3, 5], are also equivalent
from the point of view of inequalities, with the exception of Leggett’s inequality, [6].
Note that this could be connected with the fact that we deal with normal paramagnetic
liquids. Hence, it is interesting to compare the relations between the inequalities J, < 0
and Qg, > 0, cf. (6), for the simplest model of ferromagnetic Fermi liquids, i. e. with
‘spherical Fermi surfaces for both spins, cf. e. g [9], and for the isotropic models of superfluid
[10, 11]. The consequences of the inequality J, < O for the first system have been inves-
tigated in our paper [12]. On the other hand, Landau parameters for ferromagnetic liquids
are symmetric spin matrices, cf. e. g. [12]. These matrices can be uncommutative for
different / and this is the reason why the inequalities for the quadratic form (14) could,
in principle, lead to constraints for Landau parameters uncoinciding with those discussed
in [12].
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