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ON THE SINGLE SITE APPROXIMATION IN THE HUBBARD
MODEL

By A. M. OLEsS$

Institute of Physics, Jagellonian University, Cracow*
(Received March 10, 1977)

The Alloy Analogy Approximation in the Hubbard model is improved by the decoupling
scheme which includes the band shift. The condition for the ferromagnetic instability of the
system is derived. In the strong correlation limit, our solution does not reproduce Roth’s
result.

1. Introduction

The Hubbard model [1, 2] is commonly employed to describe the magnetic properties
of metals and alloys and the metal-insulator transition. Up to now, several sorts of
Green’s function decoupling schemes have been proposed (for review see e.g. [3]) but
they are usually correct only in limiting cases. The original approach by Hubbard [2]
explains to some extent, the mechanism of the metal-insulator transition but does not
preserve the Harris-Lange sum rules [4]. This approach does not give ferromagnetic
solutions of the model for any level of band filling, as it was argued by Bartel and Jarrett [5].
In the simplified version of the Hubbard IIT approximation (the so called Alloy Analogy
Approximation (AAA)) ferromagnetic instability does not occur either [6].

However, there exists another approach to the Green’s function decoupling procedure
due to Roth [7] and Tahir-Kehli and Jarrett [8], which postulates that the more moments
of the spectral function any approximation reproduces, the better it is. In Roth’s scheme
of decoupling the ferromagnetic solutions does exist in the limit of strong Coulomb corre-
lations {7, 9]. But this approximation does not describe the metal-insulator transition.

In this paper we consider a possibility of improving the AAA. The proposed solution
has a single site character. It is examined in the limit of low density. In Section 3 the single
site approximation is introduced. The criterion for ferromagnetic instability is derived.
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The stability of the strongly ferromagnetic ground state against Stoner excitations is
also investigated. It is found that for an elliptic density of states and # < 1 only the para-
magnetic solution exists.

In Section 4 the results are discussed.

2. 2. Effective Hamiltonian and the simplest treatmient of scattering with spin inversion

The Hubbard Hamiltonian is

S = Z L@+ U Z Rty D

ijo

where #;; is the hopping integral between the i and j sites, U describes the repulsion between
electrons of opposite spins in the same Wannier state 7 and the operator a;; (4;,) creates
(destroys) an electron with the diagonal spin component ¢/2 on site 7.

The first two equations of motion in Zubariev’s scheme [10] are
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The new Green’s functions on the\rlght hand side of 3 descrlbe the scattering of electrons:
the first functlon is connected with the scattermg of 6-spin electrons on — g-spin electrons;
the second one expresses the scatterlng of g-spin electrons into a —o-spin hole and the
spln-ﬂ1p scattering.

Hubbard introduced a rather elaborate decouphng scheme in his third paper [2]
in order to describe qualitatively the metal insulator transition. Now, we propose another
treatment of the scattering processes described by the second function in (3).

Let us assume that the two-body potential is replaced by the one- body coherent
potential V,(E) in all lattice sites except 1n i= 0

Ungy > VB VBmy 1% 0, @
and thus the effective Hamiltonian is of the form
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The coherent potential V,(E) will be chosen in such a way that on the average a single
site will produce no further scattering. N
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On applying the effective Hamiltonian (5) we obtain equations of motion for the

Green functions
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The simplest approximation of the last term in Eq. (7) is
Z t0m<<(a(-)+-—aam—o'_ar;lz——aao—a)aiolal-;»E = (. (8) .
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In Eqgs (6) and (7) we perform the Fourier transformation

Aig = N—llz Z dka'eikRi:
. k
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and we obtain the Green function ((ak,la,:"/a))E, which we make diagonal in the Bloch
representation g

Sy 1
+ kE
3 aa 3 == 10
Corlaicds = g o0 (10)
where
g = Y tye HRTR) (11)
{i=l :

The scattering term set equal to zero yields the condition which determines the coherent
potential V (E)

Vo(E) = Un_,+Vo(E) (U = Vy(E))G,(E), (12)

where

1 1 ;
G =~ g T (13
k

and n_, = {ng_,-
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The approximation introduced above appears to be equivalent to the AAA in the
Hubbard model. A condition, the same as (11), was also obtained by Velicky et al. [11]
in the standard version of the coherent potential approximation (CPA). The qualitative
aspects of this approximation were discussed by Schneider and Drchal [12]. They showed
that the AAA does not give the band shift and thus saturated ferromagnetism in the limit
n 5 1is not possible. The lack of the band shift is due to the negligence of the electron-hole
scattering, expressed by the decoupling scheme adopted in the AAA (8). On the other
hand, the band shift is essential in the problem of magnetic phases, as was shown by Harris
and Lange [4] and by Roth [7].

Therefore, we introduce the decoupling scheme which reproduces the first two
moments of the spectral function of Green’s function €(dg_ o@m—o— - oo - o)is|Ar s DE
instead of one:

Z t0m<<(a3-— om—c ™ an-:—aao —a)aialail:1>>E

m(Q)
=~ 5i,O(W—a<<nO—aa0cr|alTr>>E_' W—-o—<n0—a'> <<a06[al-lt—r>>E)= (14)
where
<n0-o'> (1 _<n0—a'>)W—a = - z t0m<ar-n’-—o'a0—o'_2a:1——aa0—a'n00'>' (15)
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Moments of the spectral function are defined as in [8]

m@F D = ([ [igs #ege] -], Heee]s afo}D- (16)

We notice, that the decoupling scheme (14) reproduces the first two moments of the spec-
tral function of the Green function (g ;@ o= A oo o))y only if the moments
are defined via the effective Hamiltonian (5).

One can solve Egs (6) and (7) using (9) and (14) and one gets after some algebra the

modified condition for the coherent potential
VAE) = Un_,+ V,(E) (U~ VAE)G,(E)+ W_(V,(E)— Un_;)G,(E). 17)

The Green function defined by Eqs (10) and (17) reproduces exactly only three moments
m§), of the spectral fumction. The fourth moment in the Hubbard model is:

mg‘;z . 3Un~a‘ Z t%m+50,jU3n—a+ z tOmtmntnj
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m(0)
+ U2t0j(<"0 —a'nj—a'> e <a;a3—0aj—0000> - <a;a;—aa0—ca06>)' (18)

The part connected with its scattering with the spin inversion is exactly reproduced. The
second part includes in our approximation scheme, some terms proportional to V,(E)
and does not reproduce exact expressions.

Let us examine the approximate solution obtained in the limit of low densities. In
this limit, Kanamori solved the correlation problem exactly and the Coulomb correlation
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was replaced by a T-matrix describing the scattering of two electrons [13]. Then we wish
to evaluate V,(E) to the first order in #_,. As a result we obtain

1 1
Va(E) = Un-—a'+ Va(E) (U_‘c‘.b) e z 5. (19)
N & —%&p
P
where
n;a(l_n'—a)W—a = —&MN_q (20)
and g, is the band-edge energy. Eq. (20) can be solved with respect to V,(E)
V.(E) = i 21
T U—e, Z 1 @)
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N ab—Sk
%
The Kanamori result, which is exact in this limit, is
V(E) = Lt e 22
4 - U 1 M ( )

1+ —
2N &p=—Ex
%

The effect of the renormalisation of the Coulomb energy U in the denominator of (21)
is connected with the decoupling scheme (14).

3. The improved version of the single site approximation

The decoupling scheme (14) distinguishes the site / = 0. Now we will treat all sites
more symmetrically

Z t0m<<(ag—aam—d ) a;—aao —-a')ai‘a;:r»E
m(0)

= W—a<<n0~aaOa[a;>>E— W—p<n0—a> <<a00"al4t-r>>E‘ (23)

This decoupling does preserve the same number of moments as (14). The condition for
the coherent potential is now:

VAE) = Un_,+V/(E) (U=V(E)GLE—W_,). (24)
In the low density limit it yields

. Un_,
VAE) = 7 = (25)
PAR=CN N S
ki N sk—28b
k
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- 'This result is closer to the exact expression (22) than (21). Our singlesite approximation
is in fact equivalent to the replacenient of one of the energies g, in (22) by its average
value.

It is also interesting to examine the spin susceptibility in the presented scheme. The
condition of ferromagnetic instability is [6]

Eyp

1 56 B
K=——1In | dE-"" < -1 (26)

7 n_g

—

From the deﬁnitioh of G, (Eq. (13)) we have
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where

On the other hand,

aG”—-'S 1—8 0%, I ' 29
E \ 4G, /,_.| (29)

Substituting Eq. (27) into (26) and eliminating S via (29) we get

Gy

1 If oV, ow_, . :
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where Gp and G, are G (Er) and G,(—o0). We now introduce & = V,(E)/Uand z = UG,
in order to evaluate the first integral in (30). Similarly as in [6] we obtain

Gp
1 oV, 1 ;
~Im fdGa(O ) =—Imn[L:(1-25""], (31)
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where & = Z(Egp). This part of K is always negative but greater than — 1. The second
integral is .

Gy
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0 . . . i
As the derivative ( 3 ) is usually positive and Im Gy is always negative, the expression

n—-o‘

(32) is usually negative. Thus the condition of ferromagnetic instability

1 1 oW, |
14+ —Imhn[L(1-%5) ]+ —Im GF< > <0 (33)
v 7 on_,

can be fulfilled for a certain band shape and band filling.
We have examined the single site approximation in the strong correlation limit U — oo
assuming the model density of states suggested by Hubbard [2]

2
0 O(E) = ;(1—E2)”2, |E| <1, 34)
0, |E| > 1.

For this density of states the condition (24) gives a cubic equation for G,. In the strong
correlation limit this equation becomes. quadratic

1G;—2G,+(1-n_,) =0, (35)

where z = E—W_,, and gives the density of states

2 on =, o] <VTon,,
0(E) =47 (36)
0, 2l > Vi—n_,.

The usual Green’s function technique yields
Egp
iy =2 [ Im G,(E—ie)dE, (37
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This set of quantities was determined selfconsistently for the model density of states (34)
until the difference between two successive iterates was less than 10-5. Tt appears that the
paramagnetic solution is the only solution of this set. If we assume that all electrons have
the same spin direction, the center of gravity of the subband of opposite-spin electrons
is pushed above the Fermi level, but the lower edge of this subband lies below the Fermi
level, as is shown in Fig. 1. In Fig. 2 we present positions of the Fermi level and the lower
band edge of down-spin electrons in our and Roth approximation [7]. The saturated
ferromagnetism is the stable solution in Roth’s approximation for the band shape (34),
but it is not stable in ours. ' '
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Fig. 1. Sketch of the density of states for the up- and down-spin electrons in the case of a nearly half-
~filled band and fully aligned spins in the presented approximation (SSA) and in that of Roth (ROTH).
In the figure » = 0.9
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Fig. 2. Position of the Fermi level (Eg) and the lower band-edge in our decoupling scheme (554 and in Roth’s
approximation (sRCTH) for the fully aligned spin system
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4. Discussion

We have studied a certain improvement of the AAA which includes the band shift,
connected with scattering with spin inversion. The decoupling scheme proposed above
can be incorporated into the usual CPA for alloy systems and is' more tractable in calcu-
lations than the original Hubbard’s approach.

On the other hand, the theory obtained is not consistent with Nagaoka’s limit [14].
Nagaoka showed that the ferromagnetic state should be stable in the limit of infinite
Coulomb correlations if there are N+1 electrons. N gives the number of atoms in the
crystal. It should be poted that the proof of Nagaoka holds only for 1—n = I/N. It was
argued, however, that this result can be extended to values of » which differ by a finite
amount from n = 1.

Our results are also not consistent with those of Roth who used the decoupling scheme
conserving the first four moments of the spectral function [7]. This inconsistency is due
to the fact that the width of the down-subband is proportional to (1 —nT)l/ 2 in the presented
scheme and not to (1—#,) as in Roth’s ‘scheme. We mention that the effective Hamiltonian
which was derived in the strong correlation limit by the canonical transformation
method [15] also gives the same ~(1—n,) width of the down-subband as Roth’s theory.
Thus we conclude that the theory of the metal-insulator transition needs further impro-
vement in order to describe quasiparticle subspace of single-occupied sites correctly,
especially in the strong correlation limit.

. The author would like to thank Professor J. Morkowski, Dr C. Jedrzejek and 'Dr I
Spatek for useful discussions.
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