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The calculation of spin-lattice relaxation time for one-phonon processes for para-
magnetic ions are performed by taking into account the elastic anisotropy of a crystal.
Houston’s method for the approximation of the integral over the unit sphere of any function
which is invariant under the operations of the cubic symmetry group, in terms of its values
along certain directions is used. The results are compared with the solutions obtained by
numerical integration and are shown to be a good approximation of the numerical method.

1. Introduction

The spin interactions of paramagnetic ions with lattice vibrations (the spin-lattice
interaction) are the esssential mechanism of relaxation in paramagnetic resonance, which
is responsible for the  absorption of energy. The theory of this interaction is sufficiently
‘well elaborated, but only a few papers have taken into account-the elastic anisotropy of
the crystal. Although the long-wavelength approximation and Debye’s model of the
lattice are valid for one-phonon processes at all temperatures [1], the isotropic approxima-
tion, as showed Bates and Szymczak [2], leads to significant errors.

Since the anisotropy of elastic properties of crystals is taken into account, some inte-
grals for the phonon wave vector must be calculated over all directions. These integrals
are very similar to the integral used in calculations of the Debye terperature from the
elastic constants of a crystal (see for example the review article by Allers [3]). Most of
the methods described there can be applied to our problem. The only difference is that
in calculating the Debye temperature the integrand contains velocities of the phonon
modes in the —3 power, whereas in our case these velocities appear in the —5 power
together with some linear combinations of the phonon wave vector and polarization
vectors of each of the phonon modes.
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In this paper Houston’s method extended by Betts et al. [4] and applied to the calcula-
tions of the Debye temperature will be adapted to the calculation of spin-lattice relaxa-
tion. The results obtained will be compared with the numerical solutions given by Szymczak
[5, 2].

2. The spin-lattice interaction

The Hamiltonian for the interaction of the effective spin S of a magnetic ion with the
surrounding lattice vibrations described by the strain tensor g;; can be written in the quadru-
polar approximation as:

H,, = Z Gi1aSiS jes (1)

ijkl

where Gyj,; is the magneto-elastic tensor and i, j, k, [ label the x,y, z components of
tensors.

Since the strain tensor g; is symmetric (which corresponds to neglecting rotations)
it contains only 6 independent components and can be written in the Voigt notation as
the 6-dimmensional vector ¢;, A = 1, ..., 6, Where &, = &4y, &2 = &y, 83 = &;5, 84 = &y,
&5 = &,y €6 = &y, In the following, the 1ndexes of vectors and tensors in the Voigt nota—
tion will be denoted by greek letters. i

The probablility W, of a transition of the ion from the state |} to the state [b)
with the simulatenous emission of one phonon of energy hw is given by

Wy = 25 1<a, nlHylb, n+13%0(@ = ©,), @

-5
where # is the number of phonons, g(w) — the dehsity of phonon states.

Expressing &;; by the creation and annihilation operators of a phonon and taking
o(w) from the Debye model we shall obtain [5]:

®® 1
= 327132@h A hCI) +1 Z Aijlemniijrkl<a[SmSn[b> <b|SpSrla>5 (3)
exp — —1 7
Prr’ a7
where
A = | Z (ad+ 2545 (i + M AR [v7 42, @)

T and o are the temperature and the density of a crystal, respectively, s is labeling the
phonon modes, 4; and A are the direction cosines of propagatioh and polarization vectors
respectively, v, — velocity of phonon modes and integration is taken over the spatial
angle Q of directions of phonon wave-vectors.
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Owing to the symmetry of tensor A4 in 7, j and k, / indexes, this tensor may be written
in the Voigt notation as A4,,. For cubic crystals tensor 4, has the form

IA11 A, 4,0 0 0 |

Ay Ayg 420 00

_ A 4,0 0 0
0 0 0 0 Ay0 |
0 0 0 0 0 A

The G,, tensors are known from experiment; so the main problem- is to evalnate 4 e
In order to calculate integrals (4), it is necessary to know v, and A° for all directions of A.
In the long-wavelength approximation they can be found from the secular equation

Y Tl = o4, (6)
J

X i |

where matrix Ty; for cub'ié>crystals has the form
T = ﬁ}“i)“j+’y5ij+(a—ﬁ)/1i25ij N
o= (ci1—caa)fo, P = (criatcad)lo, vy = CaalO

and ¢,, is the tensor of elastic moduli.

3. Isotropic approximation

If the crystal is treated as an isotropic elastic continuum which is equivalent to set
2 = f in Eq. (7), then the phonon spectra are simple and the integrals can by solved
directly. One obtains

Ay = 1273 ° +20,%)
Ay = i—g‘”(l’l_s”‘vt_s)

Aga = 3 (41— A1), (®)
where v; and v, are the sound velocities in a crystal for pure longitudinal and transversal
waves, given by the equations gv} = c¢,q, 007 = Cqq.

For most real crystals o # £ and then it is necessary to solve Eq. (6) for each direction
of A. The integrals 4;, may be then calculated only numerically [5-7], but the results
are valid only for the particular crystals.

The analytical methods of approximation have more general validity than the direct
method [2]. The main problem in our calculations is the diagonalisation of the T;; matrix
in integration. Such a problem occurred in the calculation of the Debye 0 from the elastic
constants and some methods of approximation of the integral over the angles are elabo-
rated. Comparing these methods with the results of numerical integration Wanner [8]
has shown, that Houston’s and Fedorov’s [9] method gave the best agreement. The
Fedorov’s method has already been applied to the spin-lattice relaxation calculations
by Bates and Szymczak [2]. Houston’s method will be adapted in this paper.
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4. Houston’s method

This method was first derived by Houston [10] for an approximate determination
of the spectrum of phonon frequency in cubic crystals. It is based on the fact that there
exist in a crystal certain directions along which the secular equation (6) can be solved
exactly. So we can express our functioris.of v; and A° and in fact any function f which
is invariant under the operations of the cubic symmetry group, in terms of the Kubic
harmonics (see [4]) by comparison of their values with the values of our function for as
many directions as harmonics we wish to have in the expansion. Then we can easily
integrate the combination of the Kubic harmonics. Houston gave the formula for 3 principal
directions in a crystal

F = {[fsin 0d0dp= (4n/35x [10£(100)+16/(110)+9/(111)], ©)

where £(100), f(110), f(111) are the values of function fin the [100], [110], [111] directions
respectively. The small letters will be used to sign- here and in the following the values
of function in particular directions, and capital letters — the integrals of corresponding
functions. Betts, Bhatia and Wyman [4] extended this formula to the 6 directions

[117603f(100) + 76544f(110) + 17496f(111)

~ 1081080

+381250f(210) + 311040f(211) + 177147f(221)]. (10)

5. Application

To apply this method to the approximation of 4y, A1z, 444 it is necessary to express
to the integrands the appropriate symmetry.

Ay = Ayy = Asz = 3 (A1 + 455+ 433)

3
- £ ey +0a1
i s=1 ?

A, = A= Ays = 3 (Ao + A3+ 423)
J z (4 Asﬂ.y/l;)‘+ (ﬂ.xAille:)-k(/lyA;/lz/li

A44 = Ass = Ags = 3 (A44+A55 +A56)

J Z[(A A+ 2,45 + (A AS+AA§)2+(/1AS+/1A5)2] . 11
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The following expressions for the integrand values for the required. direction are
obtained and can be introduced dlrectly 1nto Eq. (9) or (10) instead of f giving values of
Ay, Aysy Asg respectWely

[100] direction -
op = [eey]"% 0 =[]
a,,(100) = $x07°%  a;,(100) = 0,  a,4(100) = $x205°
[110] direction
b= [+ @B 0 = D+ @=PT oy =[]
a3, (110) = x4 (07740, %), a,(110) = $x3 (@7 °=03"),  aga(110) =4 (07 °+03°)
[111] direction
v = [p+3 @42B]% 0y = [y+3 @— BT
ayy(111) = $x 3 @77 +207°),  ay,(111) = $x5(07° =07),
a,4(111) = 1x2 (207 ° +057) (12)

A 1/2 OC A 1/2
[H N 10] ’ [H 2~ ﬁ} . ovs =[]

ay;(210) = % %[5(01 +v3 )+ —(U1 —v; )]

[210] direction

4 =92 +168*, b,

o . /J, . )
a;,(210) = %—x% [Z (vy .5"‘”2 51,

16,8 9o

a,4(210) = 3 x5 [5(01_ S+ )+ (v1° =03 %)+ 1003 5]-
[211] direction " -
A =\92133—6af, v = [y+15 GatBrH],

v, = [y+ .5 Ga+ D], vy =[y+5@-pI"?

. -3
a;1(211) = % x J?I:S(’h +v; 5)"‘ A ﬁ _Uz )+2v3 :I,
_y 3330
a;,(211) = % x %[(01 +v, 5+ ﬁ (v1°—v; %) —20;3 :l,
9B —3a

a44(211) = %X%[2(0f5+v;5)+ e (07 =3 %) +203 ]
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[221] direction
A =92+ 4867 +24af, v, = [y+1 (Ga+df+ ]2,
= [y+5 Ga+4f—-D]?, vy = [y+E(@—p]"?

a+128

A _UZ )+8v;5j|5

a,(221) = 4 x “15[5(1’1 +v5 %)+

e Ba412
a12(221)=%><%[(v1“5+v25+—[£ ity ,

3u+368

a44(221) = §x %[17(”1 +0; )+ Y

v+ 207 ]

The values of A4, have been calculated for some crystals using consequently the
isotropic approximation (Eq. (8)), the 3-term formula (Eq. (9), (12)) and finally the 6-term
formula (Eq. (10) and (12)). These results are collected in Table I and compared there with

TABLE 1
Values of the tensor components 4;,, A5, and Ay, for some cubic crystals in units of 10-18 ¢ m~3
Tensor Method of calculation
Crystal n compo- |[————— —
nent numerical isotropic ’ 3-term 6-term
= I =
MgAlL O, 243 | Ay, 3.01 0.749 75% 392 30% 294 23Y%
Asa —1.37 —0.218 84% | —1.86 36Y% —1.33 2.7%
Aga 0.678 | 0.484 28% 0.599 12% 0.685 1.1%
MgO 1.55 Aiq 1.35 l 0.694 489 | 149 10% 1. 34 0.4%
Ass —-0.568 | —0.213 629% | —0.646 149, —0.565 0.6%
e 0.518 0454 12%| 0488 6% 0.519 0.2%
Y3ALsOq, 1.03 Ay 243 2.31 5% ‘ 246 1% 243 0.0%
Ags —1.04 -0.97 6% | —1.05 1% —1.64 0.0%
Aas 1.66 1.64 1% 1.65 0.7% 1.66 0.1%
SrF, 0.81 Agy 308 | 424 419 | 28.9 6% 30,8 0.2%
Aga —13.423¢ —20.0 499 1 —12.5 7% —-134 02%
Aag 29.1 31.7 9% | 305 5% 29.1 0.1%
PbS 0.51 Ay 114.1 3460 202% | 89.5 22% 1117 21%
Ay 438  |—1660 279% |—33.6 24% | —42.6 28%
Ags 194 256 329 | 231 20% | 198 2.1%
KClI 0.31 Aqgy 53.5 355 563% | 332 38% 485 9.3Y%
Asa —15.5 —174  1022% | —9.31 40% | —14.1 9.5%
Aas 163 264 629% | 233 439, | 177 8.3%

! In Szymczak’s calculations [5, 2] the value of A4,, for SrF, was misprinted by the tape-reader, the
correct value ought to be —13.423 instead of —5.423.
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those obtained by Szymczak [5] by numerical integration. The deviations from values
obtained numerically are given in percents next to each value. Table I contains also values
of the anisotropy coefficient # = 2¢44/(cy; —¢y»). The deviation of # from unity is a measure
of elastic anisotropy (« = fforn = 1). The values of ¢ and ¢;, have been taken from
Szymczak’s calculations.

It can be see in the table, that the disagreement between the 6-term method and
numerical results is less than 109 and for crystals with 0.5 < 5 < 2.5 even less than 3%.
The agreement between these two methods is good. The 3-term method, however simpler
in calculation, gives agreement only to 407, It can be seen also that the isotropic approxi-
mation may yield values 10 times too large (A;, for KCI).

6. Other applications

The interaction of an ion with its surroundings may be also expressed by the orbit-
-lattice Hamiltonian
Hy = FZZ VI, DOLT, De,(I), : (13)
Vs
where O,(I',[) is an orbital operator of order / which transforms like the y-th member
of the term I'. ¥(I, I) and &,(I') are the orbit-lattice coupling coefficient and strain. respec-
tively.

This formalism in comparison with Hamiltonian (1) gives the possibility of taking
into account also the strains of rotational symmetry for the representation I' = T.
Analogous calculations to the ones presented above lead to integrals similar to A i
Such integrals can be expressed for cubic crystals in terms of the 4 i tensor [2]. Even
the use of rotational symmetry leads to the integral of type [7]

f Z (ﬂ« }“ AS i) = (A44_A12)

and does not introduce any new coefficients.

7. Conclusions

Is has been shown that Houston’s method may by applied not only to the calculations
of the Debye temperature, but also to many other problems for example to the calculation
of spin-lattice relaxation. The expression (12) obtained with the aid of this method
can be used for all crystals of cubic symmetry. For the crystals of symmetry lower than
cubic calculations of A, coefficients [11] may be done using the analogous method
derived by Betts et al. [12].

The components of the 4, tensor are also required for calculations of the many-
-phonon relaxation process [2], and can appear in all calculations of spin-lattice processes
when the elastic anisotropy of a crystal is considered.



518

The author is indebted to Doc. H. Szymczak for suggesting the problem and many
helpful discussions. T wish also to thank Doc. J. Rautuszkiewicz for having read the
manuscript.

REFERENCES

[1] R. Orbach, H. J. Stapelton, Electron Paramagnetic Resonance, Ed. S. Geschwind, Plenum Press
New York 1972, p. 121. '

[2] C. A. Bates, H. Szymczak, J. Phys. C 8, 2502 (1975)

31 G. A. Alers, Physzcal Acoustic, Ed. W. P. Mason, Academic Press, New York 1965, Vol. IIIB, Ch. 1.

[4] D. D. Betts, A. B. Bhatia, M. Wyman, Phys. Rev. 104, 37 (1956).

[5] H. Szymczak, Acta Phys. Pol. A42, 19 (1972).

[6] P. L. Donoho, Phys. Rev. A133, 1080 (1964).

[71 J. M. Baker, D. van Ormondt, J. Phys. C 7, 2060, (1974).

[8] R. Wanner, Canad. J. Phys. 48, 1270 (1970)

[91 F. J. Fedorov, Theory of Elastic Waves in Crystals, Plenum Press, New York 1968.

{10] W. V. Houston, Rev. Mod. Phys. 20, 161 (1948).

[11] H. Szymczak, Acta Phys. Pol. A43, 649 (1973).

[12] D. D. Betts, A. B. Bhatia, G. K. Horton, Phys. Rev. 104, 43 (1956).



