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AN APPROXIMATE DETERMINATION
OF THE ANISOTROPY CONSTANT IN THIN FILMS
OF FERROMAGNETS WITH THE UNIAXIAL ANISOTROPY
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This paper.contains an application of the approximate methed of Lawrynowicz and
Wojtczak (Acta Phys. Pol. A41, 11 (1972)) to analyze domain. structures in thin films
of ferromagnets with uniaxial anisotropy. Eﬂ‘ectlve calculations of the anisotropy constant
for multi-domdin structures of the Landau and Lifshitz type are given.

1. Introduction

At the present time th‘ere‘exist's no general theory of domains which would give
a complete distribution of magnetization inside a sample, i. e., the domain structure and
its parameters. It is possible to calculate parameters of domain structure assuming their
form based on experiments [2, 10, 11]. Brown presented the domain structure problem
with variational equations [1]. Nevertheless, their effective solution is difficult.

This paper gives applications of the approximate method, obtained by Eawrynowicz
and Wojtczak [3], to the basic domain structures in thin films of ferromagnets with the
uniaxial anisotropy. .

The method is concerned w1th the problem of determining the domain structure in
ferromagnets on the basis of physical parameters of a sample: the exchange integral, the
uniaxial and cubic anisotropy constans, and the geometrical dimensions of the sample.
The authors determine approximately the possible directions of magnetization, by mini-
mizing the free energy within the class of eigenstates in which the Hamiltonian is diagonal.
In the first step this approximation assumes that the domain walls have negligible thickness,
and that the magnetization changes by jumps over the boundaries of regions in question.
In this step the magnetization vectors are found and the possible boundaries of domains
are determined. The second step of the approximation gives the elimination of the error
connected with the assumption about the domain wall thickness.
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In the present paper the equations having solutions which determine the configura-
tions of boundaries of magnetic films are established. These equations are dependent -only
on the demagnetizing factor, which may be obtained on the basis of the geometrical
dimensions of the sample. The paper presents a numerical verification of these equations
and gives calculations of the uniaxial anisotropy constant for multi-domain structure of
the Landan and Lifshitz type.

2. The Hamiltonian

Let us consider a ferromagnetic film with uniaxial anisotropy parallel to the sample.
We confine ourselves to films so thin that their magnetic structure is homogeneous across
the film. In this case the sample can be considered as a film which is a superposition of m
monoatomic layers, each of them with thickness a. If x;; x,, x; denote the rectangular
coordinates of a point x, then we define by v = x3/a the layer which contains this point.
The position of an atom in the plane of a layer x; = va is given by z = x, +ix,, where i
denotes the imaginary unit. We assume that the easy axis of magnetization is directed
along Re z = 0 and the cosines of the angles between the axis (x,) and the vector of magnet-
ization at the point z; resp. z;, are equal to y;, resp. ;. « = 1, 2, 3.

Suppose that the properties of the sample in question are described by the Hamil-
tonian

H=H+H+H, @.1)

where H,, H,, H, denote the isotropic Heisenberg exchange term, the anisotropic term,
and the demagnetizing factor, respectively. The terms appearing in (2.1) are given by the
formula (cf. e. g. [3]):

Ho=—ml 3 38,81, Hi=-m)KySj,, Hy=-mY ¥ M;S;,
vy J i
Here I is the exchange integral and K}, denotes the uniaxial anisotropy constant parallel
to the sample. Further M, is the demagnetizing factor corresponding to the a-component
of the atom z;; S is the value of spin, and S;,, S;, denote the a-components of the spin
operator at z; resp. z;,. Here z; is situated in the plane of any fixed layer, while z;, 18
situated in the plane of the layer x; = va. _ »
According to [3], the energy E of the system of spins, giVGn by (2.1), becomes

E = —mS* Y [Kyyio+ N Muatatl ¥ 0a50] 22
. 4 Jv

J

3. An approximate determination of the domain structure

In order to determine the possible directions of magnetization within the sample
we have to minimize the energy E with respect to the direction cosines. In the presented
approximation we assume that the domain walls have a negligible thickness and that the
magnetization changes by jumps over the boundaries of the regions in question. This
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assumption allows us to consider the neighbouring atoms as having the same directions
of spins. An error appears only for atoms lying in the nearest neighbourhood of the
boundaries, and is connected with the ratio of the area of walls and domains. The
elimination of this error is realized in [4].

Owing to the above assumptions formula (2.2) becomes

E = —mS*[[[Kyy3+ ¥ (M2 +{Iy}))]do, (3.1)
b3 a

where Z denotes the section of the sample by the z-plane, do — the area element, { — the
number of nearest neighbours of an atom in the film, while M, and y,, « = 1, 2, 3, are
step functions of the variable z, constant within a fixed domain and corresponding to

M;, and y; , respectively, z; ranging over all atoms in the z-plane. Since Py =1

and in our case y; = 0, the formula (3.1) yields
E = —ms’jj Edo, (3.2)
where ;
E = so+Re s—(Re s —Im s)y2 = so-+Im s+(Re s —Im s5)y?,
so=CI, s = M;+i(M,+K)).

The minimum of E with respect to the direction cosines is realized in the following
cases:

(@ v,=0, v, =41, Res>Ims,
0 y,=0, y,=21, Res<Ims,
(¢) y; and y, are arbitrary such that y3+93 = 1 and Re s = Im s.

Physically the conditions (2) and (b) denote the possibility of four directions of magnet-
ization in the sample. They are: parallel or antiparallel to the easy axis of magnetization
and perpendicular to this axis in the direction parallel or antiparallel with the section of
the sample by z-plane. Condition (c) corresponds to the domain wall in which the magnetiza-
tion changes from the direction specified in (a) to the direction specified in (b) or vice
versa. .

4. The equations of the boundaries

The solutions of the equation Re s = Im s, in condition (¢), are the boundaries
separating the domains specified in (a) and (b). In accordance with (3.2) this equation
becomes

M(z,2)~My(z,z) = K. 4.1

Curves of the form z = f(z), determiend as solutions of the equation (4.1), represent,
boundaries of magnetic domains.

Now we derive the exact form of this equation for the multi-domain structure of
the Landau and Lifshitz type, within the thin film of a ferromagnet with the dimensions
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D,.D, ma. The corresponding domain structure is shown on Fig. 1. It contains 2rn-domains
with the magnetization as specified in (a) and-2(2n—1) domains with-the magnetization
as specified-.in (b), -
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Fig. 1. Conﬁguyation ‘of ‘t'he domain Struéture in a‘thin /fe‘froﬁlé_gnetic‘ﬁlm

Let us consider the k-th domain with the magnetization directed parallel to the easy
axis of magnetization, and calculate the demagnetizing factor at a point z* = (x}, x}3)
of the layer x5 = va, lying in the boundary separating this domain and the neighbouring
domain with the magnetization antiparallel to the axis Im z = 0 and lying above the
axis Re z = 0. According to [3], [7] and [9] the components of the demagnetizing factor
at the point z* of the layer x; =:vdtarer given by the‘formulae |

,

'y .
. d
MP =B g | M Re (2? —z*) Im e 2R

J. .Y

vy .
i d
M= P E g J“Mjf” Im (2’ —z*) Re = zdt, 4.2)
2 i ' )

J

¢
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where
M®P x malz{? —z*|7*(| 20" = %>+ m*a®) T/,

Here the summation is carfied out over all domains bounded by the curves z = z{°(z),
t; <t <t;, with the direction of the magnetization vector parallel to the easy axis for
h =:1 and antiparallel to the axis Im z = 0 for h.= 2. The constants P are determined

by the condition
M +MS) = gu’vo, (4.3)

‘where g is the gyromagnetic factor, g is the Bohr magneton, and v, is the volume of an

elementary cell. ‘
It is seen from Fig. 1 that all bounding curves consist of segments given by the equa-

tion

| 2(0) = (Ay + Byt Ay +By0), (4.4)
where 0 < ¢ <1 and A’;, 4;,By, B, are constants which may be obtained from Fig. 1
Therefore, the calciilation of M and M$) reduces to calculations analogous to the

integrals for the curves (4.4) occurring in (4.2).
‘Now let us set for the curve (4.4) =

ma Re (z;—z¥) Im — z,

dt

IZ —z*(z— 22 +E mPa?)P?

dt,

d
L' malm(z;—z*) Re— zp

dt

: 4.5)
l” |zp— 2**(|z, — 2+ m*a®)'? '

After elementary calculations we obtain the following results:
(i) if (x, x3) ¢ z,,, then

o ‘
Nyz = ﬂ {Bal (g, 0) = Iz, v)] + By[1u3, 03) ~ 1T, oD T},

Ny = 2 {B1[J(“2s vy)=J(uy, Ut)]+Bz[I(“2a v3)—I(ut, v1)1} (3.6)

By
where
Uy = Uy = 2[B1(A2—x’§)—;-B2(A1—x’f)]/_(Bf+B§)1/2,
vy = 2[By(A; ~x3)+ Ba(dy —x)]/(Bi+ B,
vy = 2[ B2+ B2+ By(A; — %)+ By(d, — )] (Bi+ B2,
uf = A4, ~x¥), of =24,-x), ul =24,+B,—x}), v;=24,+B,—x3),
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and
(u +v2+m2a®)li2

( 2r o+ m2a)? 1 ma

ma

I(u,v) =

ma v
J(u, v) = 2 arc tan —

s 3.7
u (WP +oP+m az)”2 &0

@) if (x¥, x3) e z;, then

Nyjp = Ny = Bf-l-Bz [(u 2avz) I(“1>U1)_|
where u}, v}, u3, v5 have the same meaning as in: (7).

Now let N{}) and N§) be defined by (4.5), where z; is the curve bounding the j-th
domain with the magnetization parallel to the easy axis of magnetization (Fig. 1). The
coefficient 4 = / denotes that the domain in question lies to the left of the imaginary
axis and 4 = r denotes that this domain lies to the right of the imaginary axis. Further,
suppose that N{, and N§, s = 2, 3, are defined by (4.5), where z; is the curve bounding
the j~th domain with the magnetization antiparallel to the imaginary axis. The coefficient
s = 2 resp. s = 3 corresponds to the situation, where the domain in question lies above
resp. below the real axis.

If a point 2’ tends to z* in the k-th domain and the magnetization is parallel to the
easy axis, according to (4.6) and (4.7), we get

2n(2n—1)*p*
lim N = N+

g’z : (2” b 1)2b2 + 1 ’
and
2n
lim N{) = N§— ——— .
g = 2T o N

Similary, if a point z’ tends to z* in the neighbouring domain and the magnetization is
antiparpllel to the imaginary axis, and this domain lies above the real axis, we obtain

2n(2n—1)*b>
lim N{) = N+ =t
o N = Nt (2n—1)2b*+1
and
27
lim N@ = N® — -
z,lil* 2kr 2kr (2n—1)2b%+1

- /
Here we recall that, since z* belongs to L{Y (Fig. 1), we have

= 2n—1)bx*+1 [1-(2k—1)b]D.
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Next utilizing the above calculation procedure we have derive formulae for the
components of the demagnetizing factor at a point z* of L(l",’ According to (4.2)-(4.7)
we have

M) = PNDARD), i,j=1,2, 48

Herej = 1 denotes the domain with the magnetization parallel to the easy axis of magnetiza-
tion and j = 2 — the domain with the magnetization antiparallel to the imaginary axis.
Further, if »n is an odd number, we have

R(l) Z ijlr)"{' Z ijll)a i=1,2,
i=1(2) »
T itk
and
2 g 2 "ot 2
RP = Y NP+ ¥ (NF+N+ Z( N, i=1,2.
J=1(2)

i=1(2) i=22)
izk

Similary,.if z is an even number, we have
-
RP= S N+ T N, i=12
i=2(2) j=1(2)
j*k
and
n
2 2 2 3 3 .
RP = Y NZ+ Z (N +NGH+ Z N, i=1,2
i=2(2) j=1(2) J=2(2)

Jj#Fk

In turn, since we need to evaluate K for z* of L which, in fact, is a domain wall,
we calculate in analogy to [3] the mean demagnetizing factor given by the formula

Mz M(j) r 1 1
Y = lim (l.k(z ) + «(2) - + = :
e ckl)(z*) (J)(Z ) ij)(z*) ck”(z’)
Here:

Oi=1,2
(ii) We suppose that z’ tends to z* within the domain bounded by the curve

19— 19+ [0+ 19— 10 -147, for j = 1
and

IR-LEFP-L57Y  for j=2.
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The contribution of the remaining domains to K. is very small ([3], pp. 23). Putting

(M, M) = [M®, M5)] we further rearange equation:(4.1) and finally. arrive at the
relation

N RD 4 - n(2n—1)%p*
K. ~ BB T Gn) b”+1
i~

v | - 15(.2n —-1)°p’—=n
N N(2) (2) R(Z) -
, 1o+ Nape+ + Cn—17b7+1

(s
NQFRY—
i 2n—1)’b*+1 49)
N(” NO 4RO 4 R 4 “(2” 1)?p*—m .
ik N+ (2n 1) 25241 |

5. Influence of the nature of domain walls on the change of sign of the uniaxial anisotropy
constant

As a particular case we consider equation (4.9) with n = 1, first given in [3]:

e A;b—B,b? B +4.b N RNER)
= By—Cy+24,b+(By+C)b*  By—Ci+24,b~(Bi+C)b* |’

where

Ay = I(D=2xF, D—2x3)+I(D—2x7, D+2x3)
—I(—2x¥, D—bD—2x3)—I(—2x}, D—bD +2x3),
A, = I(D=2x*,D=2x¥) ¥ KD+2x%, D—zxjj
—I(—2x%, D—bD -2x3)—I(2x¥, D—bD —2x3),

, D +2xE—b(D-2xY) D=2x*+b(D+2x%)
By =n+J ’ /2 . : NI
(1+b% (1+b?)
D—bD+2x5+2bxT 2xT+b(D—bD+2x3)
-J VN ’ NI b
(1+b%) - (1+6%",

s, ol D— —2x5—-b(D+2x}) D+2xi+b(D-2x3)
2 n (1+b2)1/2 2 (1+b2)1/2 B
D—bD=2x% —=2bx% 2xF+b(D~bD—2x%)

1+p3H7z 7 (1+DbH* y
C, = J(D—2x*, D—2x5)+J(D—2x%, D+2x%)

—J(—2x%, D—bD—2x%)—J(—2x%, D—bD+2x3),
C, = J(D=2x3%, D=2x )+ J(D—2x%, D+2x}),
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and

x5 = bx1+ - (1—b)D.

The present author has evaluated K for0 < b < 1; x;=0.0045cm, D = 1.5-10~2cm,
ma ~ 10-5 cm. Since gui/v, & 10 erg/em3, we are led to the results given in Fig. 2.
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Fig. 2. Dependence of the anisotropy constant K| on the dimension of domains in the case where the vector
of magnetization is parallel to the real axis at the point x7 — 0.0045cm

The calculations have been performed on a computer ODRA 1304. For other points
(xl, x3) the dependence of K, I on b-is analogous to that shown in Fig. 2. The cases where
x7 is either close to 0 or to ¥ D are exceptions. For these points, i. e. if x{ - 0% or 1D-,

A rer
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Lt ¢ k-1 & » 1 1 1
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Fig. 3. Dependence of the anisotropy constant Ky on the dimension of domains in the case where the vector
of magnetization is parallel to the real axis at the points x5, close to 0cm 4 D — 0.0075 cm

by (5.1), we obtain 4,, A, - —oo for 0. < b < 1. Hence K — 0~. On the other hand,
it is known [3] that K — 0 for b — 1-, and K — 3.51 - 10°erg/cm® for b — O*. These
results are visualized in Fig. 3.
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In this situation domains with the magnetization parallel and antiparallel to the real
axis vanish and we have only the 180° domain walls. The results obtained show that for
90° domain walls (0 < b < 1 and x, # 0, D) the sign changes into 1. This is consistent
with at may be expected in view of experiments described in [5, 6].

6. Dependence of the uniaxial anisotropy constant
on the number of domains for stripe domain structure ,

Using the results of Section 4 we consider now a stripe domain structure with b — 0%,

«  DE-1)

X
L 2n—1

or
. D@2k—1)

X1 —.
LT 22n—-1)
Now, for example, we take k = n, n is an odd number and x} — 4 D. In this case
(4.9) takes the form
K, ~ 55 [_ B -RS 4 __]
o0 LT B - o Ry -R@4a ]’

where

D D .
B®M = J| 2D, , C=g4J , 2D},
» 2n—1 2n—1

n—2
2D(n—j—% 2D(n—j+%
R(11,)= J,~-—(n J 2),2D _J (n J+2),2D~
2n—1 2n—1

i=1(2)

n—1
2D(n+j—} 2D(n+j—13
+ g (PP0HI=D p) g (P01 op) ],
2n—1 © 2n-1

i=2(2)

n—2
2D(n—j+1  2D(—j—3%
R = g (2, 22021t (5p 2P0 =)

2n—1 2n—1

i=1(2)

n—1

B Z [J (2D, 2D(n +j—é)) _J (ZD, 2D(n +j—1%))] ’
‘ 2n—1 2n—1

i=2(2)

and J(u, v) is defined in (4.7).
It can easily be checked that the order of K| is 108 erg/cm® and that K decreases

with an increase in the number of domains, which is consistent with the physical interpre-

tation of K.
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The last result can easily be obtained when noticing that RS ‘<  and B{® < . Then
we have

n—-2
R e U TR LA (W ) —s+91},
0
J=1(2)

where

B ' 2D(n+oc). 3 2D(n+a) _ ma (n+a)’—(2n—1)?
f("’@—-’(zp’m) J( 2n—1 2D>~5_E1+a)2+(2n-—1)2]1/2'

The function f with values
ma 4(2n¥1)2—1
— , _..n+_1. N — - -
fin DR D don—1y11

increases as n grows, All values
o, —)—f(n, )], —a+1)—fn, a+1)],

a > 0, are much smaller than —f(n, —n+4%) and they grow, when n grows, since

d
d_ (f(n’ —0!) —f(ns (Z)) >0
n
and

%(;’; (f(n, —(x)-f(n,a))) >0 for a>0.

7. Conclusions

The considerations and calculations of the above lead to the following conclusions.

The sign of the uniaxial anisotropy constant changes from —1 into 1 when the four-
-domain structure of the Landau-Lifschitz type changes into the stripe structure.

For the stripe structure the order of the uniaxial anisotropy constant is 106 erg/cm?
and it decreases with an increase in the number of domains in the sample.
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