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It is shown that the anticorrelation effect can also occur in the non-degenerate parametric
process as a result of the couplmg of s1gna1 and ldler modes. The obtamed initial phase condi-
tion for the anticorrelation is a simple generahzatlon of the Stoler condition for the degenerate
case. We compare the results for non-degenerate as well as degenerate cases with classical
and quantum pumping, which provides other possibilities of obtaining the anticorrelation
regardless of the initial phase condition. For instance it always occurs. for some time interval
after switching on the interaction in the pumping mode during the second harmonic generation
starting with zero amplitude for the second harmonic. It can also be observed in a correlation
experiment between the pumping and signal (or idler) modes or the pumping and second
harmonic modes.

1. Introduction

It is well-known that the interaction of light with matter changes the statistical proper-
ties of light. The nature of the change depends- on the kind of interaction process and on
the statistical propertles of the incident electromagnetic field. Recently,. much attention has
been paid to the so-called anticorrelation (antlbunchlng) effect (ACE) [1-7). This effect
is chatacterized by the fact that (i) the variance of the photon number is less than the
average photon number and (i) the photocounting distribution becomes narrower than
the corresponding Poisson distribution for a co_herent state. The ACE has been demonstrated
for two-photon absorption [1, 3-5], multi-photon absorption [6], degenerate parametric
amplification process [2, 7] and two-photon stimulated emission [8]...

In the present paper we show that the ACE can also occur in the non-degenerate
parametric process if both the signal and idler modes are simultaneously detected, which
is.a result of their coupling. The obtained initial phase condition for the anticorrelation
is simple generalization of the Stoler condition for the degenerate case [2]. Further we
compare, results for quantum pumping obtained on the basis of the iterative solution of
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the Heisenberg-Langevin equations for the non-degenerate as well as degenerate cases
with those for classical pumping and we find some corrections in higher powers of the field
intensity. As a consequence the ACE occurs regardless of the initial phase condition if
two modes of various frequences are in interaction producing radiation of the sum fre-
quency with the zero initial amplitude detecting both the incident modes beyond the
medium or if the second harmonic is generated from the zero initial amplitude and the
pumping radiation beyond the medium is detected. The ACE occurs in some time interval
after switching on the interaction.

2. Non-degenerate case

This process is described by the Hamiltonian [9]
2
H =Y hola;—hx[ala} exp (—iwt+ig)+a,a; exp (int—id)], 1)
i=1

where @ = @y +®,, 0; (j = 1, 2) are frequencies of the signal and idler modes, @ is the
frequency of the pumping mode, ¢ is the initial phase of the pumping and x is a real positive
‘coupling constant. First we assume the pumping to be so intense that it can be treated
classically (~ exp (—iwt+i$)). We neglect any losses.

The "equations -of motion for the annihilation operators aj(a’; being the creation
‘operators) in modes 1 and 2 corresponding to (1) are

id; = wya; —xab exp (—iwt+ig),
id, = w,a,—xal exp (—iot+ig). 2)
Their solution is well-known [9],
a,(t) = exp (—iw,t) (@, chrt+ia} exp i¢ shrr),
da(t) = exp (—iw,t) (@, chrt+ial exp ig shrr), -(3)

where a; = a,(0). Suppose the field consisting of modes 1 and 2 to be in the coherent state
[{1‘, &> (€ = &l expigy) [10] at ¢ = 0. We introduce the photon number operator
n(t) = al(t)a,(t)+al(t)ax(z) and calculate the quantity {(AW)*> = (N n?(6))~ {n(t))?
using (3) (A" denotes the mormally ordering operator in dj (), a,(t) and the brackets
mean the average in the coherent state (&, ¢,)). Thus

h 3x¢—sh kt
((AW)2>=2sh1ct[S - sh %

+sh (3x) (|12 +1&,1%)

+2 ch (3«1) [¢4] |62/ sin (¢1+¢2—¢)]- 4

This expression can be negative for some finite time interval after the switching on of the
interaction if sin (¢, +%,—¢¥) < 0 and then the field displays the ACE. The ACE is
greatest when sin (¢, +$,—¢) = —1, i.e. 1 +@,-@ = —7/2.
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The parametric amplification process with quantum pumping is described by the
Hamiltonian [11]

3
H= Y hwjajaj—hg(alazag+a11'a‘;a3), )
i=1

@3 = w;+w, and a; is the annihilation operator of a photon in the pumping mode 3
with frequency w; and g is the real positive coupling constant. The corresponding Heisen-
berg equations of motion for ait),j = 1, 2, 3 cannot be solved in a closed form. Taking
into account terms up to the second order in f, we can write an approximate solution
in the form [11]

- 2,2
. , gt ’
a,(1) = exp (—iw,1) al+lgt{1’§as— 7(41‘13“2_“1“;“‘3)]’
02D 0ot intata. - BF at t

a(t) = exp (—iw,t) a,+igtala; — EN (alalaz—a2a3a3) s

- g

as(t) = exp (—iw;1) | az+igta,a, — S (a‘;aza3+a1a"1'a3):l. 6

Supposing the field to be in the coherent state [&1, &5, &3) (&5 = I&;l expig;,j=1,2,3)
at # = 0 and making use of (6), we obtain

AW)?) = dgt [&,] &, ] &3] sin (B, +B,— )
H28°12B1Ca 17 162+ 318,12 18512 + €32~ 1€, 2|2, 12), O

where {(AW)*) = < n?(t)y ~<n(t))2, n(t) = al(t)a, () +ay (1) a, o).

Expanding (4) into a power series in ¢, taking ‘into account only terms up to the
second order in ¢ and putting x = glésl, ¢35 = ¢, we obtain (7) except for the term
—2g%¢2|&,12|&,|?, which is generally small compared with the others. Since it is of higher
order in the field intensities, it cannot follow from (4). The difference is due to the quantum
description of pumping in (5). Thus considering such a process in which two radiation
modes with frequencies w, and w, ( (€1, 1€,] # 0) are in interaction producing radiation
of frequency w; with |£5] = 0 at # = 0, we have from (D AWy = —2g%2|¢,|2|¢,|?
and the ACE occurs regardless of the initial phase condition. In order to observe this
effect we need to detect simultaneously both the modes 1 and 2 beyond the non-linear
medium (the sum frequency mode 3 being filtered). In the case of the usual parametric
amplification process |¢,], |&5]# 0, |2l =0 and the bunching effect occurs
KAW)?) = 6g°1% [€,]2|&, |2 +2g%2 |, |2

Considering the signal mode alone, no ACE occurs because CHOVAO)
—<al(t)a, (1)) = 2g%t*&,12[¢3]2 = 0 for both the solutions (3) and (6). Similarly for the
idler mode. For the pumping mode 3 we obtain <a5* (1) a3 (t)) — (al(Das(1)>? = 0, which
means that this mode has a tendency to be coherent during the interaction [11].



428

Lét us emphasize that the ACE does not occur when &, = 0 or &,-= 0, i. e. the signal
mode or the idler mode is in the vacuum state before the interaction. The ACE also does
not occur if the field before the interaction is chaotic in at least one mode.

3. Degenerate case

The degenerate parametric amplification process (subharmonics generation) with
classical pumping is described by the Hamiltonian

‘ o .
H = hoata— EK [a® exp (i2wt— ig)+at? exp (—i2wt+i9)], (8)

where a is the annihilation operator of the signal mode with the frequency w. If the field
is in the. coherent state |&) (£ = |£| exp ig,) at = 0, then [2]

(AW)?y = shkt [s@t;ih *T 42 sh (3xt) 1812 +2 ch (3xr) 1€ sin"(2¢1—¢)]. 9)

One can see that if we put &, = &, = £ in (4), we obtain (9) multiplied by 2. This is
comprehensible taking into account that the first two terms in (4) correspond to vacuum
fluctuations in. two modes and the last two terms correspond to two output or input modes
(1% in (9) corresponds to 21¢|% in (4)). If sin (29, —@) < 0, then the ACE occurs for some
time interval after switching on the interaction again. This case has been also studied in
greater detail from the pdiint of view of the photocounting statistics including the numerical
results in {7]. k

Considering quantum pumping, we can write the Hamiltonian in the form [12]

2 .
H=Y hwja}faj—hg(alza;+a’{zaz), (10)
=1

w, = 2w, d; being the annihilation operator. of the signal (subharmonic) mode of the
frequency o, and a, being the annihilation operator of the pumping mode of the frequency
®,. As the corresponding equations of motion for a,(t) and a,(t) cannot be solved in closed:
form again; we use the approximate solution taking into account terms up to the second
order in"¢ [13}

B ca4(f) = exp = i) [a,+2igtala, + g*t*(2a,a}a, — a’{alz)],‘
a,(t) = exp (; iw,1) [ay+igta,>— **(2ala,a,+ a)] 1)
Sim_ilaﬂy as above we calculate the quantity
{@wyy = <‘d12_(t")a'1_‘2 >- <(111L(7t)a1>(t.)‘>2

= 4gi|¢, %18, sin 2@, ‘—¢2)-+ 2827151+ 1218, P&~ 184 (12)
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Expanding (9) inito a power series in 7, keeping terms up to the second order in 7 and
putting k = 2g |&,], |€] = |&,], ¢ = ¢,, we obtain (12) ‘except for the small term
—2g%t2|¢,]4, which is due to the quantum description of pumping in (10) and it is of
higher order in the field intensity. Also no correlation occurs here in the pumping mode
where <a}(t) a,’(1)y—<al(t) a,(1)>* = 0, which means ‘that the pumping mode has
a tendency to be coherent [13].

Similarly as in the non-degenerate case considering the second harmonic generation
with [£,] = 0 at ¢ = 0 the pumping mode 1 detected beyond the medium will display the
ACE with {(4W)*> = —2g2t2|¢,|* (for initially chaotic light the bunching always occurs).
For the usual process of the second subharmonic. generation, |&,] = 0, |£,] # 0 and we
have the bunching effect with <(AW)2) = 4g22 £, 2. '

We note that the same result for mode 1 has been obtained independently in [15, 16].
Moreover, it has been shown there that also mode 2 displays the anticorrelation effect
starting (gt)°. These authors have considered also the anticorrelation effect in the k-th
harmonic generation process.

Related questions of the existence of the Glauber-Sudarshan quasi-distribution as
well as consequences of the behaviour of various‘m_odes in the photbcouhting di‘stribilltic,in
will be discussed in a forthcoming paper on the basis of the generalized Fokker-Planck
equation.

-4. Final remarks

... Detecting all three modes in the non-degenerate process, we _obtain. similérly.as aBove
3 L s Co
A '21 a}(t)aj(t))2> =K '21 a}r (t)‘ilj(t»2
Jj= fG d i= :

= 4gilE,] £2] 18] sin (@1 + 8, — $3)+ 287221 E, 8, 2
GG+ E D, @3

which contains all terms of the same kind as (7) and thus the correlation of the pumping
mode with the others does not have any effect on the above discussed possibilities of reaching
the ACE. This is also reflected by

(AN (af(Day()+ ai(Das())*> —<al(t)a, () + al(Das()D* = 0 (14)

and the same relation for the idler and pumping modes. Similarly, in the degenerate process
AN (@l(Day(t)+ af(Dax(®)*> —al(t)a, () + ab(Da (D))

= 4gt|¢,]%1E,] sin 28, — @,)+28°12(21&,|% +8I&121E, 12 — 1E,4]%). (15)

However, detecting single modes separately by two photodetectors and correlating their
- outputs, we can observe the ACE (regardless of the initial phase condition) having

<al(Da()al(®as(0> — al(ay (D) <al(Daz®)) = —g22[¢,|2|E, )2 (16)
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and the same relation for the idler and pumping modes, provided that the initial amplitudes
are not zero. Similarly in the degenerate process

(al(Bay(taiDa Dy —<aiDa (D)) <aj(Da (D)) = —4g" |4 1%E] (17

Such a correlation experiment between the signal and idler modes also provides the above
discussed p0531b111t1es of observing the ACE since

(al(Da,(DalDay (D) —<ala () (al(Dax(1))
= 2gtle.| 1Ea] |Es] sin (1 + 62— B3)+ P QIE PG +216: 21812+ 167 - 1”181 (18)

An application of radiation exhibiting the ACE to optical communications has been
outlined in [14].
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