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INFLUENCE OF LOCAL ORDERING ON THE VALUE OF THE
SPIN WAVE STIFFNESS CONSTANT IN FERROMAGNETIC
TRANSITION METAL ALLOYS.

II. EFFECT OF SHORT-RANGE ORDER*

By A. JEzZIERSKI
Ferromagnetics Laboratory, Institute of Molecular Physics of the Polish Academy of Sciences, Poznan**
(Received March 1, 1977)

We present numerical results from the study of the short-range order effect on the
value of ‘the spin wave stiffness constant.

1. Introduction

In the last few years there has been an increasing interest in the local environment
effects in transition metal binary alloys. A large number of experiments show the importance
of the local environment on the magnetic and electronic properties of alloys. In this paper
we study the magnon energy of binary alloys using a method described in a previous
paper (Jezierski [1]), hereafter referred to as 1, and Falicov et al. [2]. Our aim is to include
the short-range order in the expression for the spin wave stiffness constant (see I Eq. (16)).
In paper I we introduced a formula for the local two-particle Green function. Then using
the exact expression for the stiffness constant D and applying the coherent potential
approximation (CPA) we made the numerical calculations for NiFe and NiCo alloys.
In Section 3 (I) it was shown, basing on a simple cluster model, that the stiffness constant
depended on the distribution of impurity atoms in the matrix. In this paper we present
the results of numerical calculations for NiFe alloy (Section 4a) and for NiPt, NiPd and
NiCu alloys (Section 4b).

2. The short-range order parameters

We characterized the alloy by the short-range order parameters p, and pp. The param-
eter p,(pp) gives the probability that when choosing a nearest-neighbour pair such that
one of the atoms is of class 4 (B), the other atom is of the same class. Then we can
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define similarly as Falicov et al. [2] the parameters 24(A5) and g4(gp) by the relations

Aa = DPa—q4=2pa—1, 1)
Ag = pp—4qs = 2pp—1, 2
A4 = 1 corresponds to complete segregation — all atoms of class 4 surrounded by atoms
of class 4, A= =1 corresponds to a perfect binary compound. Similar definition is for

Ag. The parameter ¢.4(gp) gives the probability of finding a nearest-neighbour pair such
that if one of the atoms is of class 4 (B) the other atom is of class B (A). Tt is easy to
show that ps+g4 = L. The values of g, and g are limited by the concentration ¢, and cg
and by the requirement of conservation of the total number of particles [2]

€494 = Cpdp> (3)
or from (1) and. (2).
CAA'A‘_-CVB“A'B = cA—CB, (4)

where ¢4 = 1—c and ¢z = ¢.

3 i .

Sometimes the other short-range order parameters are used. Reck [3] and Mishra [4]
defined o; parameter which may be written as
- (1—4p)
; 2(1—c)’ .
Stern et al..[5] determined the probability p and ¢ by § parameter and the concentration.
We may write .

©)

oy =

pa = 1-fc, | ©
94 = p(L—o), @)
pp=1-p(1—c), ; ®
s = fe, " ®

where f is a parameter which may be different from unity, which describes the degree
of local order. If § = 1 then the alloy is random, when 0 < < 1 then is tendency to
segregation of 4 and B atoms into clusters of similar atoms. If 8 > 1 then atoms of one
type tend to be surrounded by atoms of the other type (anticlustering). It is easy to show
that the B parameter is connected with 4 by the relation

1
B = e (1-20, (10
¢

and

s G=d) 04D

T 2(1—0)



415

From (10) and (11) we get .
(l—c)lA¥cAB =({l1—-c¢)—c, = (12)

which is equivalent to (4).

* So far we have characterized the alloy by means of the parameters A, and Ag, which
_can vary only bet\yeen —1 and +1. Falicov et al. [2] considered three cases:
(@) ,Segrefgatio‘nf sequence

The alloy has'a tendency to segregate into two separate regions, the A4 and B regions,
respectively. For: this sequence :

Ay =Ay =1 for any c,. ' (13)

(b) Random sequence

In this sequence, there is no short-range correlation between the atoms. This se-
quence corresponds to the coherent potential approximation.
In this case '

}'A = CA_CB and }'B = CB—CA' (14)
(¢) Binary-compound sequence

All the atoms of class A prefer to be surrounded by atoms of class B and vice versa.
In this sequence, we have

Ay=—1 Ag=1-2¢c4/cg if ¢, < ca, (15)

g =—1 Ay =1=2¢gfc, ifc = cg (16)

3. Spin wave stiffness constant and the short-range order properties

"Our aim is to calculate the value of the stiffness constant. According to (I-2) we have

1
D= — |z ) M+ +nk—>V138k‘ . ((a,f_aH; al:;+ak’—>>m=ovksk : Vk'sk’:|
3(ny—n.) ; :
P k ¥

an

the local two-particle Green function e ay,; aib @Y, is determined by the relation
(I-8). In all formulae we used the same notations as in part I and {ay_a;, ; 9 % _Dw=0
= G(k—k)

where

1 T
Glk=K) = Z Go(lP; /1))

Ljl#j
@,
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1 ek (1§
= EVEDIW, 4 PW, + AW+ i)W,
Nz
Ljl#]
ap

+ Y (Wsel+Wecicl + Wacie? + Wyeiciel)]. (18)

r¥el#Ej

The two particle Green function is taken in this paper in the pair approximation. We con-
sider only the interaction between the central atom and its nearest-neighbour in the first
shell. In this approximation the sum over r vanished because it includes the interactions
between sites which do not belong to the first shell. Therefore we may write the config-
urational average of the two-particle Green function as

Glk—K') = G(c, Ag)0y = [Wy+<{cPYWy+{EYWy+{ PO Wy 10 (19)

It is easily found using the definition of pg and A that {cf) = (c}’) = ¢ and (c?c}’)
= ¢pg = 0.5 ¢ (1+4p). Then we can rewrite (19) as

G(k"‘k,) = 6kkf[W1 +C{W2+W3 +'%’ W4(1 +A’B)}]' (193)
Substituting (19a) to (17) we get

D(c, Ap) = 3 L = |:% E n +nk—>vl%8k_ E G(e, Ap) ]ngklz]-, (20)
(ny.—n-)
k k

s(k)<er

The electron energy g was taken in the tight binding approximation (I-13), and the
numerical values of V¢, and [V,&,|> were calculated in T (Section 3). The configurational
average of the two-particle Green function G(c, Ag) can be written as

G(c, Ap) = Gepa+3 WalAp—25]c, (21)

where Gepa = Wi +c[W,+ Wil+c¢? W, is calculated in the CPA and 1z = 2¢—1.
Putting' the expression (21) to (20) and dividing over Dy; (the value of stiffness
constant for a pure nickel) we obtain

D(c, A D{c, 2 W, (Ag—2 :

(c, Ap) _ (¢, Ap) e (. ‘B ) |Vk3k|2a 5 (22)

Dy; Dy; 6NnDy;

e(k)k<8xv
or using the definition of P(I-15a)
48F> 2,2
i Pl—)a’t?cW,(Az—2

D(c, ) _ D(e;Tg) _( w e =

Dy; - Dy GnDNi

here n = n, is the total number of 1 spin electrons. (We consider the case when n_ = 0),
and W = 161.
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In our calculations we assume that the hopping integral z changes linearly with
concentration. We take ¢ in a form (I-10)

t = tAA+2CH’ (24)

where H = 0.5 (55 —14,). The formula (24) is obtained from the expression ¢ = (1 —0)t4q
+2€(1 —c)tAB+CZ tBB'

4. Numerical results
(a) NiFe alloys

In part I we calculated D using the coherent potential approximation. Now we apply
formula (23) in order to get the values of the stiffness constant D(c, Ag)/ Dy

First we will consider NiFe alloy. Magnetic disorder-scattering indicates that the
short-range order may exist over much of the concentration range of the NiFe alloys.
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Fig. 1. Values of D(c)/Dn; as a function of impurity concentration ¢ for NiFe alloy
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TABLE I
I (V) t (eV) e (eV)
i ) v
Ni . 0.95 0.075 : 0.000
Fe 097 0.089 ' —0.135

Reck [3], from a comparison of the measured and calculated effective magnetomechanical
ratio g’ values, estimated the value of the short-range order parameter «, as a function; of
the atomic fraction of iron. The values of «, estimated by Reck were small in absolute

10 g - H=00%
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Fig. 2. Plot of D(c, Ap)/Dn;j versus Ap for the different concentration Fe. The points denote the CPA results

magnitude, and corresponded to random sequence. For Nig 45 Feg »5 alloy the value
of the stiffness constant D(c, o, = —0.003) is greater than CPA result by only about 3 9,.
In our calculation we assume the values of hopping integral ¢, intraatomic Coulomb
interaction I, and atomic potential & for NiFe alloy as in Table I. We take nf =.n}' = 0.6.°
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Fig. 3. BEstimated dependence of the short-range parameter Ap and probability pp on the concentration ¢
' for ordering NiFe alloy
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Fig. 4. Plot of the computed difference AD = D(c, Ag)— D(c, ZB) for ordering and for the disordered NiFe
el MR ) 2g Clalloy . P il
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TABLE 11
D(c, 28)/Dni 4D
c B D(c, ZB)/DNi [CIIiA] - [meV A2]
0.10 —1.0 0.84 - 0.82 10
0.20 -1.0 0.74 0.66 43
0.25 -1.0 0.72 0.59 72
0.30 —0.8 0.66 0.53 83
0.40 —0.4 0.51 0.42 46

The values of the spin wave stiffness constant calculated in the coherent potential approxi-
mation are in agreement with the experimental values of Mikke et al. [4].

In the paper I we have shown the dependence of D(c) on the change of the intra-
atomic Coulomb interaction. Now we calculated in the CPA the values of D(c)/Dy; for
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Fig. 5. Calculated values of D(c)/Dn; for NiPt alloy for the different H

C



421

D)o,

d=005
00 i ' L 6=Q21‘O d=010 |
00 01 02 03 04 C
Ni Pd

Fig. 6. Calculated results of D(c)/Dn; for NiPd alloya — I = 0.9eV, § = 0, H = 0.0, 0.005, 0.01, 0.015 eV
b—I=072eV, H=0.01¢V,d = 005, 0.10, 0.20 eV. Points denote the experimental values (Stringfellow
[14]) The broken curve shows Morkowski’s [12]} result for H = 0.005

the different hopping integrals. These results are presented in figure 1. Then we examined
the influence of a local ordering on the value of the stiffness constant. We used the ex-
pression (23) and calculated the D(c, Ag)/Dy; for the different Ay (see figure 2). As evident
from figure 2 the value of D(c, Ag)/Dy; may be greater than the CPA result.
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When we assume that Az or pp changes with concentration as in figure 3 we get the
values of D(c, Ag)/Dy; similarly as Mikke et al. [6]. In figure 4 we show the computed
difference AD = D(c, ig)—D(c, 2g) (curve @) calculated in this paper (Table II) for
ordering and for disordered alloy 'and‘Mikke et al. [6] results calculated in terms of the
Heisenberg model (curve b). ' :

(b) Stiffness constant in NiPd, NiPt and NiCu alloys

We comﬁuted the values of the stiffness constant in the CPA for several nickel
ferromagnetic alloys Ni T (where T = Pd, Pt, Cu). The intraatomic Coulomb integrals I
and the values of & = eg—ey; for’Pd, Pt and Cu were taken as in Table IIT. The ratio of
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Fig. 7 'Célcﬁiated values of D(c)/Dyj for NiCu allés}‘fdf the dlﬁ‘erent \H -
I/ (T = Pd, Pt) we assumed similarly as Inoue et al. [9],-and. § for Cu as Inoue et al.
{11]. In this calculations the saturation moment of alloys (NiPt, NiPd, NiCu) changed
with increasing. inpurity concentration as reported by Mishra [4], Fischer et al. [7] and
Fischer et.al. [8].. The values of D(c)/Dy; for NiPt, NiPd and NiCn.alloys:are presented
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TABLE III
| 1@V) ’ 3(eV)
Pd 0.9 0.0
0.72 ‘ 0.05—0.20
Pt | 1.08 0.0
Cu | 0.95 | -2.0

in'ﬁgures 5-7. In figure 6a the broken curve shows the Morkowski [12] results calculated
for the ferromagnetic transition metal dilute alloys in the Random Phase Approximation
using the method of effective magnon Hamiltonian.

5. Conclusions

In this paper we calculated the spin wave stiffness constant in the coherent potential
approximation and then as a function of the short range order parameter A. According to
the definition 4, for A = cz—c, there is no short-range correlation between the atoms.
This case corresponds to CPA. The numerical results for Ap = 2¢—1 = Jp are the same
as the CPA results which were obtained using the Edwards and Jones [15] method (see I).
The effect of short-range order depended in our model on the value of Az— ;. This result
was obtained in the pair approximation, but when we took all the terms in the two-particle
Green function“into account we get more complicated expression for the spin wave
stiffness constant. For NiPd, NiPt and NiCu alloys the stiffness constant decreases when
the concentration of impurity increases. In the case NiPd alloy our results are similar to
Stringfellow et al. [14] experimental values.

I would like to thank Professor J. Morkowski and Miss J. Jankowska for critical
remarks and discussion.
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