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MAGNETIZATION IN A FERROMAGNET WITH MAGNETIC
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Based on phenomenological free energy for a ferromagnet with axial symmetry, stable
magnetic phases and their ranges of existence are determined as a function of the assumed
material constants. The kind of phase transitions occuring at the stability boundaries are
defined. The temperature is introduced according to Landau’s assumption and the temperature
dependence of the magnetization components calculated. It is shown that in the case under
consideration the magnetization direction can change under the influence of temperature
variations. Also, the magnetization length can increase with the temperature in a certain
magnetic phase.

1. Introduction

Experimental investigations of recent years showed an intriguing dependence of the
magnetization on temperature for certain ferromagnets. This unusual behaviour resides
in the existence of the temperature region in which the magnetization increases with
temperature [1]. The interpretation of this phenomenon was based on the spin-glas
model [2] or by taking into account the domain structure of the sample [3].

The phenomenon in question occurs also in uranium compounds, in which, as is
well known, the crystalline fiekd plays a major role in forming the ordered state. It seems,
however that the dependence of the magnetization on temperature, which is a manifestation
of the possibility of different magnetic phases to occur, cannot only be a consequence
of the single-ion interactions related to the crystalline field effects. It seems certain that
anisotropic exchange interactions (super-exchange effects or the interaction via the
conduction electrons in metalic compounds) should also play a vital role in some of,
these compounds. The possibility of interplay of many types of interactions, and the
arising problem of their coexistence, is very interesting from both the point of view of
the general theory of magnetism and the particular properties discovered in these
compounds. ’
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In the present paper we shall focus our attention on implications following from the
coexistence of comparable exchange and single-ion interactions [4] or a special type
crystallographic symmetry [5].

As shown in [4], a homogeneous deformation along the appropriate axis, when we
have comparable exchange and single-ion interactions, might produce an easy magnetic
axis and easy plane perpendicular to this axis,

. Leaving behind microscopic considerations, one can ask how-the. phenomenon can
be described qualitatively in terms of a phenomenological theory. To answer this question,
appropriate symmetry conditions [4, 5] should be applied to a general form of the free
energy and, then, physical conclusions drawn: on.a simple minimization procedure. The
basic conclasion of the qualitative considerations of [4] and those presented here is a mere
necessity of the symmetry axis to exist. We assume also the free energy to be of the fourth
order in the magnetization components at most. In this way our model of axial ferro-
magnets is formnlated on the physical and ‘mathematical grounds.

. Yet we should like to pay attention to the assumption that the lattice deformation
plays a crucial folé in our considerations. At the very least we suppose on this ground that
the lattice deformation, which can apparently occur at the transition from the paramagnetic
to ordered state, is of considerable importance. Therefore, the approches that neglect
these effects should be treated with particular care. This concerns also the results of the
present paper for the deformatlon, ‘which leads to our initial- assumptlons, is considered
as constant and the relevant symmetty is not permltted to change at phase boandaries.
This restriction should be born in mind when comparing our results with experimental
data for a given magnetic compound. Such comparisons may be attempted, in particular,
for rare earth and actinide compounds in- which changes in the lattice parameters affects
the occurence of magnetic phases and even the temperature dependence of the magnet-
ization. Of course, the lattice transformatlons cannot be of such importance at some temper-
atures or for some compounds and ‘then our results can be fully apphcable It is hard
to find a general criterion for the va11d1ty of the above-mentloned restriction, whlch —in
our opinion — should be taken 1nto account when comparing our results with the given
experimental data.

2.. Phase diagrams

Accordmg to our assumptlon the generahzed free energy. of an axial ferromagnet
can be. written in the form [4]

F = k1m1+k2m2+d1m1+d2m2+2cm1m2, (1)

‘where m; denote the i-th components of the magnetization Vector k;, d; and ¢ are. constants
:(l = 1, 2). Principally, the same free energy was studied by Imry [6). However, these
investigations were restricted to studying phase diagrams when there éxist a couphng of
two order parameters. In particular, the influence of the coupling parameter (¢ —in our
notation) on the occurence and kind of phase transitions, was examined while the functional.
dependence of the order parameters (magnetization components) on the temperature
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was neglected in [6]. As we emphasized at the beginning, the temperature dependence
of the magnetization is of basic importance in our considerations. As concerns the phase
diagrams, we shall construct them in another way, which is, in our opinion, better for
interpretation. Moreover, these diagrams are independent as the temperature dependence
of the coefficients k; and k, in the free energy (1) is assumed.

The necessary conditions for an extremum of (1) with respect to m; and m, to exist
lead to

my(ky+2d,m3+2em3) = 0,  my(ky+2d,m2+2em?) = 0, )

By solving these equations and examining the sufficient conditions, we conclude that the
free energy takes on minima if

m1=m2=0 and k2>0, kl >0 (3)
R k, c
m1=0, m2=—ﬁ and k2<0, d2>0, k1>d—k2 (4)
2 2
ky : c
i=—7, my=0 and k; <0, d;>0, k2>—k1 %)
2d1 1
d,k,—ck dik,~ck
" G-z iz S S 122dil_1 and d; >0, dy >0, dyd,>c* (6)
¢ —aa,

cz_dldz i

In the last case, (6), the reality of m; and m, requires that the inequalities

ki— —ky <0, ky——<0 andk <0, k <0 0
d, d,

be satisfied. On the grounds of the relations (3)—(7) we can illustrate the regions of
appropriate state in the plane (ky, k,). The states defined by (3)—(6) will be denoted:
Eq. 3)—A, Eq. 9 —B, Eq. (5—C, Eq. (6)—D. As seen from 3—(7) we can
distinguish two cases: I d;d,—c¢? < 0, which corresponds only to three phases — the
paramagnetic A and two ferromagnetic ones B and C; II d;d,—c2? > 0, when all the
four phases — paramagnetic A, ferromagnetic B and C as well as deflection one D — can
occur. The resulting phase diagrams for positive material constants d,, d, and ¢ are shown
in Figs. 1 and 2. By a simple discussion one can show that in case IT our system undergoes
second-order phase transitions induced by certain changes of k; and k,. In the opposite
case I both second- and first-order phase transitions can occur because of an overlap of
the states B and C on the plane (k;k,). It can easily be shown that the state B is stable
and C metastable if

d,k} > dk3. 6))
The oposite situation (B — metastable, C — stable state) corresponds to

k2 < ik ©
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Let us introduce temperature to our system in a standard way

T-T; T-T,
! and k, = a, 2
T T,

1 = a1 3 (10)
where a, > 0, @, > 0 (in our further considerations we shall still assume that d;, d, and ¢
are positive as well). The Landau, assumption (10), is obviously a rough approximation
and, therefore, conclusions about the temperature dependence of the magnetization are
of limited validity'. It is, however, reasonable to hope that gross features of this dependence

hky * $ k
?
= o
B
{ | = ‘S 7 y ks
7 | f = —e-
T 7| 7,
=32 -/
& D ﬁi —a:C wd'\{\l“l 2\5/ /
o Y S =C
b7/ / N
</ %
X5 \{.’( i ‘
Fig. 1. Phase diagram if d;d, > ¢? Fig. 2. Phase diagram if d,d; < ¢

are reproduced correctly. When treating T as a parameter from (10) we get the following

linear relation
a,T, T,
ki = ——Sky4a, | = —1]. 11

P <T1 ) (1

It should be noted that solely the region k; > —a;, k; > —a, on the plane (k,k,) have
a physical meaning (>0 in (10)) and an increase in T implies an appropriate shift on
the straight line (11) in the positive direction of k; and kj.

Upon introducing (10) to (4)—(6), we obtain the following temperature dependerice
of the magnetization in the respective states and intervals of the temperature in which
they occur

A. ml L= 0, My = 0; T> T2 aDJ T> Tz, (12)
B my=0, mi=——2 T4 2 T<T,andal >a (13)
O 1 s 2 2d2T2 2d2’ 2 s

1 This approximation is strictly valid at T close to T;, however, the critical fluctuations result in this
way that it does not relate to the closest vicinity of T¢. It is obvious that obtained relations (e.g. magnetiza-
tion versus temperature) give only qualitative suggestions for temperature far from 7;. Generally, accuracy
of approximation applied here is also dependent on materials because material constant determine a range

,ot_f the validity of Landau theory (see e.g. [7]).
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. al a1 - S,
C. mi=——-T4+-—2, my=0;, T<T, and T > g 14
1 2.T, 24, 2 1 B B (14)
o o B : ﬁ _ S g By il
D. mi= 2—99 T— i(—p , mi= 2_<—p T- 2_<—p; aT < « and BT < B, 15
where we introduced the following, notation
a.d ca i a,d, . ca
;le - ?2% =& _;.,;1 - ?11 =B, ard,~—ca, = a, ady—cay = B,
*~dd, = ¢. (16)

Phase transitions between different states can occur when the temperature line (11) crosses
the phase boundaries in our phase diagrams. Thus, we obtain the following relations
o

, TBD = —, (17)
o

TAB — T2, TAC - Tl, »TCD —

‘Ua||h

which define the temperature of the phase transitions. If d,d,—c? < 0, T and TPP
determine the temperature boundary for the existence of the states C and B, :respectively.
In this case we shall denote these temperature values by T°(= T°°) and T® (= T™).
They correspond to discontinuous changes of the free energy from metastable states to
more favorable ones. As it follows from (8), (9) and (10) the temperature at which the
state B (as well C) ceases to-be stable (and becomes metastable) is determined by

TBC _ aldz“_azﬁ ‘ (18)
ayd, ayd,
4 T,
On the ground of (17) and (18) one can show that
TP< T < T when T,>T, (19)
and .
T® > T%° > T¢ when T, < T, (20)

3. Temperature dependence of the magnetization components.

The presented results permit one to analyze changes in the magnetization and phases
due to temperature variations. The straight line (11) determines, in fact, also changes in
the magnetization depending on the mutual relations of a1, Ty, a,, T, besides the phase
transformations. There change scan be considered in an analytical or graphical way. Assume,
T\ > T,. The opposite case can be easily obtained by the simple renumeration (1-22-1
of the material constants and, therefore, the results are quite similar. Consider, for instance,
a, T, c

a, T, d, )

. d
the case ¢? > d,d,, and 71 <
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The temperature line runs as shown in Fig. 3 and crosses the stability ranges of the
states A and C and that where both the states C and B satisfy the minimum conditions. In
the first cases A and C the temperature depéndence of the magnetization is described by
(12) and (14), the second B or C corresponds to (13) or (14). On the grounds of (17) it

lk7

Fig. 3. Temperature line (dashed one) for T; > T, ,Z—? < 0, % < 0 in the phase diagram if d,d, < 2. The
arrows on the line denote the direction corresponding to an increase in temperature

my A m;

{

i

T m: ym2

Fig. 4 Fig. 5

Fig. 4. Temperature dependence of the magnetization components (Ty > T5) for did, > ¢* in the case
of B<0 or B>0,8<0 and for did, <-c* in the cases: @ >0 or $<0,&< 0, >0 or §>0,
>0,8>0
Fig. 5. Temperature dependence of the magnetization vector (Ty > T2) for dyd; < ¢® in the cases: B<o,
a<0,x<0or>0a2<0,<0

can easily be noticed that T > 0 if a,d, < ca,, and T® < 0 if a,d, > ca,. The latter
resnlt is not, of course, physical, and leads to the conclusion that the state B does not
occur. Similar considerations and discussions concerning the relations between the tempera-
tures which determine the stability ranges of the admissible states enable us to find the
temperature dependence of the magnetization in all cases.
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The results obtained this way are shown in Fig. 4—10. The corresponding analytical
expressions are given by (12)—(15) when assigning the appropiate formula to the states
marked in the figures. Attention should be paid to that for ¢? > d,d, there exists the
range of coexistence of two different phases with the magnetization (my, 0) or (0, m,).

am

my ym2

Fig. 6 Fig. 7
Eig. 6. Temperature dependence of the magnetization vectors (Ty > T,) for did, < ¢ and /_3_> 0,
€<0, >0
Fig. 7. Temperature dependence of the magnetization components (T; > T) for did, > ¢? and @ > 0,
£>0,8>0
This is why the diagrams present the results for m, and m,. On the other hand, if ¢? < d,d,,
m, and m, denote the components of the magnetization vector since the state with declined
magnetization satisfies the minimum conditions.
It is worth noticing that a change in temperature at a given relation between the
material constants can lead to an effective change in the direction of the easy axis. At

T my n;'i

my ¥ m2

v Fig. 8 Fig. 9
Fig. 8. Temperature dependence of the magnetization components (T, > T,) for did, > ¢* and @ < 0,
‘ «>0,8>0
Fig. 9. Temperature dependence of the magnetization components (T; > T3) for dyd, > c? and x < 0,
<0, >0 -
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a certain relation between the material constants metastable (overheated or supercooled)
states can arise (see Fig. 5 and Fig. 6). In other cases continuous change takes place. Thus,
both discontinuous and continuous phase transitions are admissible. They correspond
to the first- and second-order phase transitions, respectively, since the Landan theory is
applied here. As pertains to the continuous transitions the jump of the specific heat occurs
in accordance with the old classification.

The results concerning the change in the direction of the effective easy axis correspond
to those of [8]. The starting point of this paper was the free energy

F = Fy+K, sin? p+ K, sin* y,

minimized with respect to the angle ». It is of some importance that the minimization
was carried out with respect to the single parameter solely and the temperature dependence
of the anisotropy constants — being quite different from that of our paper — was assumed
from experimental data.

4. Temperature dependence of thé length of the magnetization vector

Based on the results of the previous sectlons it seems interesting to consider the
change of the length of the magnetization vector in the deflection state D. For other states
such results are, of course, presented prev1ously (m = m; or m = m, for the states C
or B, respectively). The state D oceurs if ¢* < dyd, and &T < «, BT < . For simplicity,
we shall still assume T; > T,. When introducing the notation (16) and taking advantage
of (15), we obtain the following expressio’ns for the magnetization length and cosines
of the angle v that the magnetization vector forms with the axis parallel to the vector
©, m,).

20M? = (G+PT—(a+p), (21)

cos® p = l‘_BT;_ﬂ .
| @+P)T—(+p)

The first dependence is parabolic while the second one is a hyperbola in the coordinate
frame (cos? p, T). The asymptotes of the latter curve are given by
i?F _atp

a+B’  *  a+p’

As seen from (21) at T = T, the magnetiEzation length is equal to zero. By a simple
analysis of (21) and (22) one can show that both the magnetization length and cos?
are decreasing function of Tif f >0 and & > 0 or § > 0, & < 0 and |&| < B. Otherwise,
the magnitude of the magnetization incredses with temperature (if B >0, & < 0 and
|&] > B) or independent of T (if B > 0, & <>0 and |&| = P) while cos? v is still decreasing
(linearly if |&] = B). In the first case cos? ylis a convex function of T while in the second
case it is a concave function. The obtained results are illustrated in Figs 10—11, which
include all the possible cases following from our free energy. The results shows in Figs
10—11 seem particularly interesting and unexpected for they correspond to an increasing

(22)

(cos® y),, = (23)
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dependence of the magnetization length on T. Therefore, we also examined the behaviour
of the entropy in the state under consideration. By inserting (10) and (15) to (1) and taking
the temperature derivative we have

2 . 2
xeans=[(2)+(2)(2) (2]

ai a;
— | = J(a1ds—cay)— | — | (azd;—cay) (24)
Ty T
M \ M M
My Mzl
M1 "':_—E
M, : : My |
T T
| =
e S : :
i : : : : 7]
‘;coszw ! cos®yr Jcos?y
a b c

Fig. 10. Temperature dependence of the magnetization length M and angle ¢ th_'«_lt the magnetizatign forms
with the axis (0, m.) in the state D if 8 > 0, > 0, 8 > Ointhecases:a. % < 0, § <le[;b.x<0,p = [a;

af—Ba o+
c.z<0, ]3> Ja] or @ > 0. We use the notatlony———é——,M§=—/?——f;r,M§= = d
a+p 298 29
M M :
My [reserensennant :
: : My |eeee et
TN S : .
ir S : i T

ovesdicassannse
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sanesssirtene

L TIITITEY TTTYS
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H
.

I
. 'coszw
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Fig. 11, Temperature dependence of the magnetlzatlon length M and angle v that the magnetization forms
with the axis (0, m,) in the state D if § >0, 2 < 0, ¢ < 0, _B >0 in the cases: a. &] > B; b. B = |a&[;

e . Bap
298 T T 2gm

(9
8
a
t
)

yeos“y !

o

c. || < B. We denote M3 =

for the entropy S of the deflection state D. The coefficient of T determines their behaviour
under the change of temperature The coefficient is the quadratlc form with respect to a,/T,
and a,/T,, and its determinant (equal to d,d,—c?) is positive for the state D (see (6)).
Thus, the entropy is an increasing function of 7" without respect to the partlcular dependence
of the magnetization length on temperature. ;
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5. Concluding remarks

As seen from our results, the assumed free energy [4, 5] leads to various behaviour
of the temperature dependence of the magnetization depending on mutual relations of
the material constants. The fact that variations of the temperature cause changes in the
direction of the effective easy axis is characteristic of this behaviour. This change manifests
itself as a jump (first-order phase transition) or undergoes in a continuous way (second-
-order phase transition). It seems interesting to consider again the origin of the assumed
free energy, which is a consequence of the compatibility between the exchange and crystal-

Fig. 11 Fig. 12

Fig. 12. Temperature dependence of the I_pagnetization length M q_nd angle y that the magnetization forms
with the axis (0, m,) if didz > ¢2, & < 0, B > 0, > 0, 8 > 0and B < || The three cases are marked with:
full line (3;), dashed one (J;) and dash-dotted line (63, 8 = |«|). where &; = &;+f; and 6; > 6z > &3

Fig. 13. Temperature dependence of the magnetization length M and angle y that the magnetization forms
with the axis (0, my) if did, > ¢, €< 0,6 <0, >0 and B = |z]

-field interactions. One of these interactions create the easy axis while the second causes
the perpendicular easy plane to arise. Thus, as evidently seen from our results, these
interactions depend in an effectively different way on the temperature. Upon assuming
such a physical conclusion, the results concerning the temperature change of the effective
easy direction and an increase of the magnetization length with temperature do not seem
unexpected. It seems also that this is how one can interpret experimentally found cases
of an increase of the magnetization in certain magnetic materials.

At appropriate choice of the material constants ¢, d;, T, a; the presented results
permit one to obtain a large variety of the dependence of the magnetization length on the
temperature, Figs 12 and 13 illustrate two of these possibilities, which seem particularly
interesting to us. The experimental results of [1], for instance, are in an eventual correspon-
dence to the case shown in Fig. 12.
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