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The domain wall motion in perovskite-type crystals is investigated using nonlinear
thermodynamics of irreversible processes. Equations of the velocity of motion of the domain
wall on the applied electric field both for phase transitions of the first and second order are

. obtained. The obtained equations differ qualitatively for phase transitions of first and second
order. For the first order phase transition, there is a linear dependence of the velocity of the
180° domain wall on the external electric field, but the temperature merely changes the
coefficient of lmear proportionality without aﬁ‘ectlng the nature of the functional dependence.
The calculations are in full agreement with available experimental data.

1. Introduction

Switching polarization of a ferroelectric crystal, due to an electric field, is not homo-
geneous, but is affected by the generation of domains and their growth thanks to the
movement of domain walls. The model theories for this phenomenon are based on a series
of arbitrary assumptions concerning the dependence of growth on time, field, temperature,
appropriate mechanical properties of the walls etc. However, the given problem can be
solved only in terms -of nonlinear thermodynamics of irreversible processes..
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2. Formulation

The Gibbs free energy per unit volume of a ferroelectric crystal may be represented
in the Landau form

@ = &g +3uo(T—T}) P> +3pP*+ 1y PS+1k(VP)’ —EP, (1)
where ag is related to the Curie-Weiss constant, § and y are Landau expansion coefficients,
k describes the energy due to a monhomogeneous order parameter P (polarization), Ty,
is the Curie-Weiss temperature: and E stands for the external field. The temperature de-

pendence of coefficients f, y and k is neglected. The Gibbs free energy of the system is
obtained as an integral over the volume V and represents a polarization function

y = [ O@v)dv. V)

The evolution of the order parameter P towards its equilibrium value is described by the
kinetic equation ; :

opP o 0P @
- L oy - L |: 0 :I ’ 3)

o ep | eP ' 8(VP)
where it is assumed that the kinetic coefficient L has no singularities near the phase transi-
tion point.

In the case of first order phase transition (§ < 0) it is convenient to perform the follow-
ing substitutions

1= POk t=LpYTt PP= -7
E=—p" Ve 0= (=p) T~
which per'mitsv one to reduce Eq. (1) to
@(s) = 305> —Js*+ Ls8—es, @)

where 7, 7, 5, e and 0 are the reduced radius-vector, time, order parameter, electric field
and temperature, respectively. At the phase transition point T,, 6 = 0.75 because the
relation between the thermodynamic expansion coefficients at this point is

3% = dao(To— Ty.

The general formula for 0 is

.

=3 (T-T)(H-T)™ )

For second order phase transition (f > 0) one can neglect the term proportional to
the sixth power of polarization and performing the following substitutions

n=Fk"%, t=Lt, P*=sQ2B", E=(Qp) Y% 0=oay(T-T,),
we can rewrite Eq. (1) as:

@(s) = 1052 +1s*—es (6)
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Equation (3) may be reduced to

Os iy © 0e(s)

T g @

where @(s) is given by Eq. (4) or (6). Equation (7) presents a nonlinear diffusion equation
on'the basis of which the main laws ruling the domain wall movement may be studied.

3. Results

By studying stationary crystal states by means of Eq. (7) it is possible to provide for
each value of 6 such a value ¢ = e, that for e > e, Eq. (7) will have a single solution
corresponding to a homogeneous polarlzatlon of the crystal. For the values e < e,, Eq. (7)
has two solutions s, and s,. In this region of values the solution of Eq. (7) describing the
motion of 180° domain wall, is a function s(z, #,) with the asymptotics

0s(z, 1)
si(T, —0) =51,  Sy(1, +0) =5, —— =0, €]
: 6’11 1 =%ow

where 7, is the projection of # on the axis perpendicular to the frontal part of the wall.
The solution of a nonlinear equation of the type of Eq. (7) with boundary conditions (8)
describes a front, stationary within the moving coordinate system n* = 5, +ut, where u
is the velocity of the front, being in this case a function of 8 and e. In other words the
function s(z, #7,) can be represented as s(z, ;) = s(y*) what describes the stationary state
of domain wall, which is mooving with speed « along the axis ;. To be specific, let us
presume that e >0, 5, > —s,. In the moving coordinate system Eq. (7) reads into

A% ds  dg(s)

=u— 9
dn*? udr]* ds ©)
with boundary conditions
ds
s(—0) =5, s+ =s; | =0 (10)
) d’? =t

Solution s(n*) gives the possibility of finding the velocity of the domain wall motion.
From Egs. (9) and (10) follows

@«

ds \? dp 0Os
— | dp* = — — —dn* = @(s s 11
”f(dn*) n j a5 on* dn @(s1) — (s2). (11)
On the other hand, the function s(y*) determined from Eq. (9) depends parametrically
on . This can be used for an approximate determination of u by the variational method.

In the approach using the local potential, Eq. (9) is obtained from the condition of integral
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stationarity
1= | La%, (12)
where
ds® 7 ds\?
L= L1+usd*, L; = -’f(d *> +<p(9) (13)

The index zero in Eq. (13) designates the function which is held constant. We choose
for a test function

!

o s n*<n
s(n*) = ! v (14)
) {n*/z n*em,.n’), ;

T
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Fig. 1. Dependence of the velocity of motion of the domain wall on the applied electric field at varying
temperature in the case of first order phase transitions =

1
2. 4 6 - 8 0%

Flg 2. Dependence of the ve1001ty of ‘motion of the domain wall on the applied electric field at varymg
temperature in: the case of second order phase transition :
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where ' = zs,, p'’ = zs, but z is the variational parameter derived from the condition

dI ‘
— = (15)

By substituting Eq. (14) into Eq. (11) and with the help of condition (15) we obtain
nonlinear equations for the velocity of the domain wall from where one has
51)— ¢(s
e Ple)= () S
(52=50"*{(s1+52) [9(52)— p(s:)]+2[ | ¢(s)ds— g(s,)s; + (s )s ]}/

For e >0, we get u >0 which corresponds to the spreading of domains with the
polarization s,. The results calculated by formula (16) are produced in Figs. 1 and 2 for
phase transitions of the first and second order, respectively.

4. Discussion

As is seen from Figs. 1 and 2 the dependence of the velocity of the motion of the
domain wall differs qualitatively for phase transitions of first and second order. In the case
of first order phase transition, there is a linear dependence of the velocity of the 184°
domain wall on the external electric field, but the temperature, at which the crystal is
analysed, merely changes the coefficient of linear proportionality without affecting the
nature of the functional interrelation. It must be emphasized that the obtained results of
calculation are in full agreement with the available experimental data [1]. Direct comparison
shows that the experimental curves are shifted to the right and down with respect to the
theoretical curves. Hence, when the theoretical dependence has the form u = u(E), the
experimental one will be ¥ = u(E—E,), which can be accounted for by the presence of
defects in the crystal, the latter form traps, the breaking from which requires some addi-
tional field E,. Comparison of the calculated curves for second order phase transition
with experimental data [2] also shows a full qualitative agreement. It should be pointed
out that the experimental data imply that both for the first and second order phase transi-
tion, the velocity of domain walls considerably increases when the phase transition
temperature is approached. The results of our calculations also show this velocity becomes
a nonlinear function of temperature near the phase transition.
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