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Theory of time-dependent displacements of mechanical quantities in the many body
systems is presented. Validity of the gaussian approximation of the displacements distribution
is considered. As an example, kinetic equations for the distribution functions of momentum
and position displacements of brownian particles moving in equilibrium fluid are derived.

1. Introduction

When we consider time evolution of an arbitrary physical quantity we are frequently
- interested in the determination of the probability distribution of the time dependent
displacements of this quantity from its initial valge. Although in stationary systems any
function of the phase space variables has a constant and time independent average, the
actual observed values of this function can be significantly different from the mean.
Since there is no reason to expect any preference for the displacements leading towards
the mean value, one tends to believe that the displacements can be described by the gaussian
distribution. This problem was discussed mainly in connection with the theory of brownian
motion and was stated in fundamental papers of Einstein [1] and Smoluchowski [2].
More recently it became important for the so called hydrodynamic description of the
Van Hove self time-correlation function [3-6]. It is the aim of the present note to show
under what circumstances the gaussian distribution can be considered as a proper descrip-
tion of the real time-dependent displacements.

In the next section, the general formulation of the problem is presented. Section 3
is devoted to the problem of multidimensional random processes and in Section 4 we
present some illustrative examples of the general formalism. In the last section a discussion
of the results is given.

* This work was partly supported by the Polish Academy of Sciences, Research Project 03.10,
** Address: Instytut Chemii Fizycznej PAN, Kasprzaka 44/52, 01-224 Warszawa, Poland.
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2. General theory

Within the framework of classical mechanics the time evolution of an arbitrary
mechanical quantity Y(I', ) can be described by the Poisson-Liouville equation

dY(T, t)dt = 8Y]ot-+L(NY(T, 1) @1

where by I' = ({a:}, {p:}) we denote a whole set of coordinates and ni_omentums of all
the particles of the system and L(I') is the Liouville operator which is defined by

L) =% {dq;/d10|0g;+ dp;/dtd[Op;}, (2:2)
dq,jdt = 0H|op;, (2.3)
dp,jdt = —0oH/dq;, (2.4)

H is the Hamiltonian of the system. If function Y(I', #) does not depend explicitly on time
(e.g. when 9Y/0t = 0) the time evolution of this function is caused only by the canonical
transformation of the phase space variables I'y=o = I'(I') and Y(T,t) = Y(I;, 0). The
phase set I', at time ¢ is a function of the initial set I and if the later is known precisely,
the initial and future values of the function Y(I', ¢) are determined. Usnally such complete
information is not available and we have to assume that only the initial distribution o(I')
of the phase space variables is known.

Thus equation (2.1) describes the time evolution of a stochastic precess with random
initial parameters. When dealing with the many body systems we also face a serious
problem stemming from the fact that only in exceptional cases analytical solution of the
equations of motion (2.3) and (2.4) is possible. Usually it is necessary to make some approxi-
mations with respect to the dynamics of the system and validity of these approximations
determines the range of validity of the theory.

We restrict ourselves to problems in which Y(T', #) is not an explicit function of time.
It is always possible to divide the Lioaville operator into two parts

L = Lo+SL (2.5)
defined in such a way that
LY(I',t =0) =0, (2.6)
and
léL = L—Lo. (2,7)

The ordering parameter A (0 <A< 1) is introduced only for convenience and can be
set equal to one at the end of the calculations. Evolution equation can be now expressed
in the form

dYjdt = (Lo+ML) Y, (2.8)

and it is clear that if 4 = 0 then the function Y is a constant of motion.
We define now the time-dependent displacement of Y(I', ) by

X, 1) = YT, )—-Y({T, 0). (2.9)
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This function fulfils the following evolution equation

dXjdt = (Lo+ASL)X+ 2L Y(T, 0) = (Lo+ASL)X(T, t)+ (T, 0), (2.10)
where
Y(I', 0) = LY(T, 0). .11

Equation (2.10) can be formally solved in the form of infinite series and we obtain

th—1

XTI, 0 = i dty {1+ ; A":fdtl (j) At,6L(1,)0L(t,- 1) ... SL(t)}ASL(t,) Y(T', 0), (2.12)

where 0L(¢) is the operator defined by
SL(t) = exp (tLo) 6L exp (—tLy). (2.13)
Probability density of finding displacement X (I", t) = x at time ¢ is given by the expression
S ) = [dI o(I) SIX(T, )~ x] = (S[X(T, H)—x], 214

where by a pointed bracket we denote an averaging over a square integrable initial distribu-
tion o(I') of the phase space variables.

We can now define the characteristic function f(k, t) which is related to the distribu-
tion (2.14) by

flk, 1) = _j dxe™f(x, f) = (*XTDy, (2.15)

It can be easily proved that the characteristic function fulfils the following equation of
evolution _ :
0. f(k, t) = ik u(k, t) f(k, t)—k2D(k, t){ (k, t), (2.16)

or an equivalent relation

J(k, ©) = exp [ik jt dt'u(k, t')] exp [ - k* jt dt' D(k, t')]
0 0

¥ t T
= [cos k { d'ii(k, )+i sin k [ di'ii(k, )] exp [~ k? [ di' B(k, '], @.17)
0 0 0

if u(k, t) is defined as the Fourier transform of the drift coefficient given by

k-u(k, t) = Im o 1n f(k, t)/ot, (2.18)
and D(k, f) as the Fourier transform of the diffusion coefficient defined by

k2D(k, ) = —Re 8 In f(k, 1)/ot. (2.19)

From the definitions (2.18) and (2.19) it follows immediately that the transport coefficients
can be expressed in terms of averages by
u(k, £) = {<X(r) cos kX(t)) <{cos kX(t))+<X(f) sin kX(t))
<sin kX (1))} {<sin kX(1))?+ (cos kX(£)?}, (2.20)
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and .
Dk, 1) = {<X(t)X(t) %z%% Ccos kX(H)
—{X(t) cos kX)) <X(t) Sill’c )"Zﬁ;t)>} {¢sin kX)) +<cos kKX(DY?} 71, (2:21)
where
X(@) = dX(T,0)/dr. (2.22)

Tt should be noted that the formulas (2.20) and (2.2.1) are exact and follow from the assumed
form of the evolution equation (2.16). .
From the general properties of characteristic functions we have

f dt' Dk, t') =0, (2.23)
[} .
u(k, t) = u(—k, 1), (2.249)
Dk, 1) = D(—k, t). (2.25)

There are also limiting conditions

uo(f) = ,{111; u(k, 1) = <X, (2.26)

Do(t) = il_{% Dk, 1) = X)X (@) —<X(H> <X(®>

= 1/24[dt{{X(HDX(H) —<X(®)*} = i A {{XOXEN XD XN} (227

It follows from equation (2.16) that the displacement distribution function fulfils
the generalized diffusion equation of the form

of(x, )+V, ? dx'u(x—x', Df(x’, 1) = V2 Of dx'D(x—x', )f(x', 1), (2.28)

where the local drift and diffusion coefficients are related to their Fourier transforms
through the following expressions

u(k, t) = | dx cos kx u(x, 1), (2.29)
D(k, 1) = § dx cos kxD(x, 1). (2.30)

If the local diffusion coefficients is a positively defined function (D(x, t) > 0 for any x
and ¢) then D(k, ) < Do(t). Besides if D(x,?) and u(x, r) are integrable functions of x
(e. g |Do(?)| < o0 and |ug(r)| < o) then

lim D(k, t) = 0, (2.31)

k>t
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lim a(k, t) = 0, (2.32)
k>t
on the basis of the Riemann-Lebesque theorem.,

We have also two important momént relations. The first connects an average displace-
ment with the drift coefficient

m(t) = <X(@)) = gdt’ﬁo(t’) (2.33)

and the second one — the diffusion coefficient with the dispersion of the random pro-
cess X(f)

ox(t) = 2[ dDo(f) = <XOX@)>~<XWD*, 234)

The last expression generalizes the well known Einstein relation for the average square
displacement of a brownian particle and can be considered as a special case of the fluctu-
ation-dissipation theorem. :

It is also instructive to determine the short time behaviour of the transport coefficients.
By expansion in the Maclaurin series we obtain

u(k, 1) = (X, 0)>+ KX(T, 0)> (2.35)
lim u(k, t) = {<X(T", 0)) (2.36)
and o
Dk, t) = {<X(T, OX(T, 0)y —(X(T, 0)>*] 2.37)
31113 D(k, t) = 0. (2.38)

From these expressions it follows that the short time forms of the transport coefficients
are independent of the wave vector.

So far we did not make any approximation and equation (2.17) is entirely equivalent
to the initial definition of the characteristic function (2.15). Calculation of the local
transport coefficients u(k, ) and D(k; ¢) is at least as much troublesome as the calcu-
lation of the initial expression. The form of the evolution equation (2.16) can be
greatly simplified if we use instead of the local transport coefficients their long
wave limits (2.26) and (2.27). This means the use of preaveraged transport coeffi-
cients in place of those which are valid for a specified values of the displace-
ment variable. Such a procedure known as a “hydrodynamic” approximation was sug-
gested by several authors in various contexts. However, one should remember that this
cannot be considered as a first step.of any systematic procedure based on the expansion
of the drift and diffusion coefficients in a power series with respect to the wave vector.
Although several authors suggested this kind of generalization of the usnal diffusion
equation introducing higher order transport coefficients (so called Burnett and super
Burnett coefficients) this proposition seems to be unacceptable in view of the Marcinkiewicz
theorem [7, 8]. This theorem which is based on the requirement that the probability density
function has to be given by a non-negative definite integrable function states that: If
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P, (k) is a polynomial of degree m > 2 then the function exp [P,(k)] cannot be a character-
istic function. Thus as long as we are interested in the probability density functions it is
clear that no use can be made of any systematic expansion of transport coefficients which
would lead in consequence to this kind of expression for the characteristic function.

It seems interesting to consider how good representation the real distribution can be
obtained if one use the gaussian approximation defined by the equation

af Ok, 1) = ik to(D)f °(k, 1)~ k*Do(0)] °(k 1) (239)
for the characteristic function or equivalently by the Fokker-Planck equation for the
displacement distribution

3.f°(x, )+ Viio(Of °(x, 1) = VEDo(f °(x, 1) (2:40)

fox, 0 =(@n7H [(I) ar Do(t)] ™" exp [—(x— ‘I) dt'ﬁo(t'))zl(g dtDo(r)] (241

In spirit of the central limit theorem it can be expected that the true distribution asymp-
totically tends to the gaussian for large values of the displacement variable. In fact let us
- agsume that X(¢) is a bounded random variable, which means that for any time ¢ exists
a constant L such that |X(¢)| < L. Then one can always choose such a set Oy, that for
k e O, we have Lk < 1 and the trigonometric functions in (2.20) and (2.21) can be replaced
by the first terms of their expansion in the Taylor series. Thus for ke @, we have

Jte, ) = JoUke, 1), (ke Qp). (2.42)

Now let us consider the inverse Fourier transform
foe, £ = @) | dk exp (—ikx)f (k, 1)

=(n)~" | dkexp(— ikx)f(k, )+(2n)~" | dkexp (—ikx)f(k, ) (2.43)
Or. oL
where Q; is a set corhplementary to Q. Using (2.42) we can obtain an approximate
relation
fx, ) = @r)~t | dk exp (—ikx)f°(k, )+(2m)”" | dkexp (—ik0)f(k, ©). (244
o [)3
For large values of x the second term on the right-hand side of (2.44) will give a negligible
contribution due to the rapid oscillation of the trigonometric functions. Thus an asymptotic
form of the displacement distribution is given by

%%, 1) ~ @r)~* | dkexp (—ikx)f°(k, 1), x> ©
(55

~ 2m)"L | dk exp (—ikx)] °(k, 1) = f°(, 1), (2.45)

where the integral was extended to the whole space since the complementary set Q is
expected to give an unimportant contribution.

Let us consider now the transport coefficients as functions of the parameter 4 intro-
duced in Eq. (2.5). Since this parameter can be considered as a measure of change in time
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of the physical quantity Y(I',¢) (if A - 0 Y is a constant of motion), then for slowly
changing quantities one can expect a reasonable approximation if we restrict ourselves to
terms of order A2 only in the calculation of these coefficients. In this approximation we
obtain again the gaussian distribution with

uk, t) = uo(t) = SLOY(T, 0)> + A2 f dt'(SL(HSL()Y(I, 0)) (2.46)
0
and

Blk, 1 = Bo(t) = A{LISLOYCT, O)] [[ e SL(YY(T', 0T

—(SLHY(T, 0)) j;dr’(éL(t’)Y(F, 0)>. (2.47)

It should be noted that higher order terms of the A-expansion lead to the polynomial
expansion of the transport coefficients with respect to the wave vector and therefore are
excluded on the basis of the Marcinkiewicz theorem.

Results of this section shows more clearly why the gaussian distribution plays so
important a role in the theory of time-dependent correlations. It appears as an asymptotic
distribution in (a) short time limit (Egs. (2.35), (2.37)) (b) long displacement limit (Eq. 2.45)
(c) slow time changing limit ((Eqgs. (2.46), (2.47)) and also in an unlikely event when (d)
all the cumulants of order higher than the second vanish identically. It is important to note
that the gaussian distribution cannot be considered as a first step result of any systematic
procedure which would allow eventually to calculate further nongaussian corrections.
We return to this problem in the last section.

3. Multidimensional random processes

Results of the preceding section can be readily generalized to the case of multidi-
mensional random dynamical variables. Introducing an n-dimensional vector formed by
the set of functions Y(I', t) = [Y((I', 1), Y(I', £), ..., Y,(I', t)] each of them changing in
time according to the Poisson-Liouville equation we can define the time-dependent
fluctuation vector X(I', ¢) by

X(I,t)y =Y, t)-Y(T,0). 3.1
This vector has the following matrix evolution equation
dXjdt = (Lo+20L) - X(I', t)+ 0L « Y(T, 0), (3.2)
where L, is the diagonal operator matrix with elements defined by
(Lo)aY(I',0) =0 (3.3)
and AJL is the diagonal operator matrix given by

0IL = L—L,. (3.4
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L is the non dimensional diagonal matrix formed by the Liouville operator for the sytem

(L)y; = 8L (3.5)
The characteristic function of the n-dimensional distribution is given by
JUe, 1) = Cexp (ik - X(T, 1)) (3:6)
and fulfils the equation of evolution of the form
0, (k, 1) = ik - a(k, )f (k, t)— kk:D(k, ) (k, t) (3.7

analogous to the equation (2.16). By a dot we denote the matrix product defined by

a‘b= aibi

o

1

!

3

and u(k,t) is a vector defined by
u(k,t) = {(X'(t) cos k - X(¢)) {cos k - X(t))+<X’(t) sin k * X(1))

(sin k- X(¢))} {<sin k - X(2))*+<cos k - X(2))*}. (3.8)

By D(k, 1) we denote a dyade
Bk, 1) = {<X(t)X(t) sink - X(1) > Ccos k - X(B)

k- X(®)
sin k - X(¢)
k- X(¥)

It is simple to obtain from (3.8) and (3.9) appropriate limiting formulas similar to the one
obtained in Section 2. However, since we consider now n parallel dynamical processes
each of which is characterized by a separate rate parameter 4; (i € [1, n]), we have to take
into account that in general these parameters may not be of the same order. If we enumerate
these processes according to the decreasing rate of change in time A, > 4, > 43 > ... > Ay
we have the following possibilities to consider: (a) All processes have about the same rate
of change —2; = A for any i. (b) The rate constant fulfills the inequality 4, > 4, > ... 4,
> 23,5 dpyr > e > Ay

In the first case we have to keep terms of the order A% for all the processes in the
expansion of the transport coefficients with respect to the rate constant. Thus we obtain
the N-dimensional gaussian distribution [9]

—{X(1) cos k - X(2)) <X(t) >} {¢sin k- X(0))*+<cos k- X()>*} 1. (3.9)

£ox, £) = (2n)""*[Det jt dt'Do(t)] " ? exp {—1/2
0

X (x— jf dt'uy(t)) - [ft dt'Dy(t)]™ - (x— _[tdt’fto(t'))}. (3.10)
0 0 0 .

In the second case it is sufficient to keep only terms proportional to the second power of
the rate parameter 4;. For the processes 2, 3, ..., m we have to calculate the transport
coefficient in the linear (with respect to the rate parameter) approximation. Processes
numbered by m +1, ...n are in this time scale a constants of motion.
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4. Time-dependent momentum and position displacements in equilibrium macroparticle
solution

Let us consider an equilibrium system consistin g of N macroparticles immersed in the
heat bath of light solvent particles. We assume that the mass of macroparticles is very
much larger than the mass of light environment particles. It may be expected, that due to
the inertial effect, momentum change of the thermalized macroparticle is slow and oscillates
around the mean value. On the basis of the results of the previous section we obtain the
following kinetic equation for the probability density of finding a set of momentum
displacements 6PY during the time period ¢

0,f(5P", 1) = i jf At CF(OF (1)) 0/06P,0[06 P, f, 4.1)

=1

<

where

Fy) = exp (tLo)F(0) = exp (tLo)SLP, (4.2)

is the actual force acting on the i-th macroparticle moving with a constant momentum
P, - L, is the Liouville operator of the “unperturbed” system in which the macroparticles
are freely moving in the fluid that is in their potential field

N
Lo = Lf+ Z Pi/M * VR{' (4.3)
i=1

Ly is the Liouville operator of fluid particles moving in the field of force of stationary
macroparticles and 6L is the operator of infinitesimal momentum change of macropar-
ticles due to their mutual interaction and interaction with the fluid particles.

oL = -y OU(IR;—R;)/oR; - (0/oP,—a/oP))
i<j

M =

= ). 2 OU(R,—r,))/oR, - 9/oP,. 4.4

1

i

U(|R)) is a central interaction potential.

Since the motion of macroparticles is slow compared to the motion of light solvent
particles, the position vectors of macroparticles also form a slowly varying random process.
For the probability distribution of position displacements 6RY we obtain respectively

Of(OR", t) = % }dt’(Pi(t)/MPj(t’)/M%q : 0/00R,0/00R,; f, 4.5
ij 0
where

Pyt) = exp [H(L;+SL)]P(0) = lim exp [(L;+6L-+e ), Pj/M - Vg )]P;. (4.6)
- -0 J

The macroparticle velocity correlatiqn function can be calculated using hydrodynamic
method which is frequently applied in the statistical theory of polymer dynamics [10].
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5. Discussion

In recent years the brownian motion problem and the theory of time-dependent
fluctuations received a great deal of attention. Statistical methods developed in this field
were found useful not only for the description of many particle systems but also for
characterization of complex technical units and in several nonphysical problems [11-13].
The Fokker-Planck equation plays a central role in the theory. It is therefore especially
important to know exactly under what assumptions physical processes can be described
by this equation and if there is a chance of improving this theory for example by the ase
of higher order differential operators instead of the usual second order diffusion equation.
In the present note we discussed the problem of approximating of the real distribution
of time-dependent displacement by the gaussian random process. It was shown that the
gaussian distribution can be considercd as an asymptote of the true displacement distribu-
tions and by no mean forms a first step of any systematic procedure. Especially, it does not
seem justified to generalize the diffusion equation by the introduction of higher order
derivatives and so called Burnett and super Burnett transport coefficients. This problem
has been recently studied [4, 14] and it was shown that the higher order transport coefficient
for the hard core particle self-diffusion problem are divergent for the limit of long time.
However, even if we retain them as arbitrary functions of time, the “Burnett” diffusion
equation would lead to a nonpositively defined distribution function according to the
Marcinkiewicz theorem. This points out that one must be very careful in the application
of apparently obvious systematic methods of derivation of the kinetic equations such as
a gradient or coupling constant expansion ‘since they do not always guarantee a correct
result. Elaboration of the systematic procedure leading toward a properly defined kinetic
equations on every step of approximation is still a challenge for nonequilibrium statistical
mechanics.
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