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DETERMINATION OF THE HEAT EMISSION COEFFICIENT
AND COOLING CONSTANT OF SOLIDS BY ANGSTROM’S
PERIODIC HEAT WAVE METHOD
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Applying Angstrom’s dynamical periodic heat wave method, equations are derived
for the simultaneous determination of the cooling constant B, heat transmission coefficient «
and heat loss coefficient G of solids. Measurements of these quantities are performed using
an especially designed and constructed setup. A study is performed of the thermal diffusivity &
and the three quantities §, o and G of methyl polymethacrylate versus temperature. Moreover,
all four quantities are measured for methyl polymethracrylate in vacuum and various external
gaseous media at room temperature.

1. Introduction

The temperature dependence of the thermal conductivity A and temperature diffu-
sivity k of dielectrics and semiconductors is a topic of interest to numerous authors, es-
pecially with regard to the temperature range close to the phase transition point. The fact
that experimental studies are given, preference is probably related with the enormous
difficulties besetting the mathematical treatment of thermal conductivity. In spite of these
difficulties, the basic physical aspects of thermal conductivity are by now well under-
stood. ' - )

It has been repeatedly established that, at the phase transition temperature, the
change in structure of solids affects. the value of their specific heat ¢, ([1, 2] and others).
This in turn affects the values of their thermal conductivity (ThC) and thermal diffu-
sivity (ThD) coefficients [3]. Now the heat transmission coefficient (HTC) « and cooling
constant 8 depend essentially on the specific heat, ThC and ThD. Information concerhing
the variations of these three properties is to be obtained from the temperature dependence
of the ThC and ThD coefficients and cooling constant.
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Of especial interest to this author was the work of Pilawski [4, 5] who, applying the
temperature method, determined the temperature dependence of the heat transmission
coefficient « in ferroelectrics of the barium titanate group. In the phase transition region,
be observed a marked maximum of « and confirmed experimentally the dependence of «
on the specific heat and ThC coefficient.

Drabble and Goldsmid [6] as well as Kherlamov [7] lay stress on the lack of informa-
tion concerning the loss of heat through the mantle of a cylindrical solid in the process of
temperature investigation -of its ThD. The present work deals with the problem of the
simultaneous determination of the ThD, HTC, and cooling constant, Moreover, we make
an attempt to evaluate experimentally the influence of heat losses through the mantle of
a solid rod on the value obtained when measuring its ThD. The ratio of the cooling constant
and ThD coefficient, obtained in simultaneous determinations of the two properties, is also
a source of valuable information. This ratio, in fact, conveys information on the changes
in specific heat, since it is directly proportional to the latter. The determination of the
above ratio is of particular interest in the range of temperatures close to the phase transi-
tion point of the solid.

The simultaneous determination of the ThD coefficient, cooling constant, and heat
transmission coefficient can be performed by the periodic heat wave (PHW) method of
Angstrom [8, 9]. Using this method, we derive equations for the cooling constant, the
heat transmission constant, and all-over heat loss coefficient of solids. Furthermore, by
applying an especially constructed measuring setup, we determine the temperature depen-
dences of the three coefficients as well as of ThD for methyl polymethacrylate.

2. Method for the determination of the heat transmission coefficient o and cooling constant
B of solids

The heat transmission coefficient and cooling constant of solids are accessible to
determination by Angstrém’s PHW method [8, 9], applied and extended by the authors
of Refs. [10-13] and many others. In all casse, a differential equation in partial deriva-
tives has to be solved. The equation describes the ThD of the solid in the direction of the
x-axis, which is that in which a non-steady state heat flow is made to propagate through
the solid. It is of the following form [7]:

0T(x, 1) *T(x, t)
= =k 2
ot 0x

—ﬁT(xa t)a (1)

with k — the ThD coefficient, and f — the cooling constant. Eq. (1) takes into account
the loss of heat through the external surface of the solid. The latter is a cylinder (rod),
with diameter very small compared to its length. Indirectly, B describes the heat given off
by the surface of the rod to the external medium.

Numerically, f is positive and has the same value at all points of the rod. According
to Kondratiev’s theory of the ordered state [14], the numerical value of f is independent
of the initial temperature field in the solid, but depends on its ThD and ThC coefficients,
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its dimensions, and shape. It depends moreover on the external conditions of heat exchange.
The value of f8 is a measure of the response of the solid to.cooling or heating of the medium
in which it is immersed. :

The theory of the ordered state [14-17] shows that the cooling coefficient § and heat
transmission coefficient « are related by the egnation

5 . o . .
= qa- )

c @
where S is the external surface of the solid, C its total heat capacity (C = Ve,0), and
a the number of inhomogeneities of the temperature field within it. If the temperature of
the bulk of the solid is everywhere the same, we have ¢ = 1, and Eq. (2) becomes

o

p=5—.

(3
For a solid in the shape of a cylinder of radius R, the constants § and o are related as
follows:
20 - . .
e 3
The product of the specific heat ¢, and density ¢ of a solid is referred to as its thermal
accumulativity y.

If the heat transmission coefficient o is known numerically, one is able to determine
the inflnence of the surrounding medium on the body immersed in it. The value of «
moreover defines the.conditions of heat exchange between the surface of the solid and the
surrounding medium (e. g. a gas, or liquid). Quite generally, the exchange of heat proceeds
by conductivity, convection, and radiation. In the most general case, heat -exchange canbe
expressed as follows:

o= oyt Ops )

where «, accounts for convection and conductivity, and «, accounts for the contribution
of radiation.

In Angstrom’s PHW method, one assumes the following boundary conditions (of
the first kind) when solving Eq. (1):
(a) for x = 0 i. e. at the front surface of the infinite rod

T(x, 1) = i A, cos (nwt+ ¢,), 6)
n=0
(b) at x =
T(x,t) = 0, 7

where T(x, t) is the difference in temperature of the body with respect to the temperature
of the medium. In the method considered, the initial condition is of the form:

T(x,t) =0, t=0 @®
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After Angstrom, the variation in temperature for the above stated boundary and initial
conditions can be written in the form of the Fourier series

T'(x,t) = Z (p, cos n.cot-i—;i,, sin not), 9

n=0
with p,(x) and d,(x) — harmonic components, N p_{ Q?: A, — amplitude of the n-th

harmonic of the periodic heat wave, and arctg % = @, -— phase of the n-th harmonic.
n

The variations in temperature in the points x; = Lo and x, = Ly+/ of the thin rod
are, respectively

Ti(x, £) = Y. (P, cOS nwi+dy, sin not), (10)
n=0

s Ty(x, 1) = Y. (py, €OS nwt+d,, sin not). (11)
n=0

The amplitudes and phases of the n-th wave harmonic in the points x, and x, of the rod
are calculated from the following relations:

Ay, = ph+di,; @y, = arctg Z‘"

in

Dan

A =Pt Bys g = wrcig 2. 1)
On introducing the notation
P = |P1n— Pa2nls (13)
and
In D, = o 221 (14)

2n

one obtains in conformity with the PHW method [8, 9, 18] the following equations for
the ThD coefficient &

nl? ol? vl?

k = =] =
t®,InD, 2&,lnD, 2D,

(15)

‘where @, is the difference in phase of the n-th heat wave harmonic in the points x; and x,,
.due to the finite propagation velocity .v of the waves, 7 is the period of the wave, o its
«circular frequency, and D, the ratio of amplitudes of the n-th heat wave harmonic in the
points x; and x,. In order to compute @, and D, numerically, one can apply the Fourier
-method of graphical harmonics analysis [19] and have recourse to computers.
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In the case when sine waves are obtained at x; and x, the computational procedure
simplifies considerably. The phase difference and amplitude ratio now become

P = |p1—@al, - (16)

InD=1n 14—1 . 17)
Az
Henceforth, we shall be concerned with the case when sine heat waves arise in the points
x; and x, of a thin rod of radius R < L. .
It has been shown [20] that the ratio of the cooling constant § and ThD coefficient k&
is equal to

In? D—¢?
pmboe as)

where /1s the distance from x, to x,. By having recourse to Eqs. (15) and (18) we obtain
in the form
(I’ D—d*)  w(ln® D—?)

. = - . 19)
B @In D 20 InD (

The PHW method of Angstrom morcover permits the determination of the heat
transmission coefficient o. To this aim, we apply Eqs (4) and (15); this yields « in the
following form:

nyR(In* D— 452) wyR(In* D~ q)’)
xS . 48 (20)
2t In D 4d In D

It is obvious from Eq. (20) that, in order to obtain a, we have to know — in addi-
tion to the quantities accessible by PHW investigation of ThD — the heat accumulativity
x and radius R of the rod.

The product oS = G is the over-all heat loss coefficient [16, 17], S being the surface
area of the mantle of the cylindrical rod. If the diameter 2R of the latter is very smalf
compared with its length; its external surface reduces approximately to its mantle. The
heat loss coefficient G defines the heat received by the surrounding medium from the
mantle of the rod per unit time per unit difference in temperature. From Eq. (20) for G,
we derive the following expression:

2 2
e nSxR(l_q D~— <I>_) ngR(ln D—¢__). @1
21@In D 4@ In D

The preceding considerations show that the sine PHW method, applied essentially
in determinations of ThD, permits moreover the determination of the cooling constant,
HTC, and heat loss coefficient. Once all three coefficients f, « and G, characterizing directly
or indirectly the losses of hcat through the mantle of the rod, arc available, one is able to
evaluate experimentally their influence on the numerical value of the ThD coefficient
measured.
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3. Apparatus, and results of medsurements

When determining the numerical values of the heat transmission coefficient and cooling
constant of solids, we had recourse to the setup show in Fig. 1. The supply circuit of the
micro-heater (H) included a time-controlled switching system, synchronically switching
on and off the current flowing in the circuit. The periodical changes in current gave rise
to periodic heat waves in the heater. When studied in the latter, they were found to con-
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Fig. 1. Block diagram of measuring setup for the determination of the heat transmission coefficient, colling
constant and thermal diffusivity coefficient of solids

tain higher harmonics. In our investigation, we applied sine waves. In order to obtain
sine waves in the sample (P), the waves produced by the micro-heater were made to tra-
verse a higher harmonics filter (TF) before attaining the sample. The filter consisted of
platelets of appropriate thickriess cut from a KCl single crystal [21]. A study of the waves
in the sample showed that only sine wave propagated in the latter. The sample was glued
with silver paste to a heat recéiver (HR) of high heat capacity compared to that of the
sample. The us¢ of Degussa silver paste provided for permanent and close thermal contact
bétween the micro-heater; higher harmonics filter, sample, and ‘heat receiver. The ‘heat
waves propagatmg throughout the 'sample were studied by means of thermocouples (Thy)
and (Th,) placed at the pointsi x, and X, of the sample, respectively. The thermoelectrlc
voltage signals from the thermocouples (Th,) and (Th,) proportional to the’ variations in
temperature in the points x; and x, referred to the temperature of the surroundings, were
transmitted to a contactron relay (PK) controlled by a non-stabilized multivibrator circuit
(UM). In this way, the thermoelectric signals from the points x; and x, of the sample
weré fed to the d. c. input of an ‘amplifier with a. c. transduction (WS). On amplification,
the signals proceeded to-the recorder (R). The static temperature of the sample was deter-
tiined by the compensation method with a copper-constantan thermecouple and compen-
sator (K). : :

Fig. 2 shows some heat' waves, obtained with the measuring apparatus described
above. The wave with the larger amplitude was recorded with the thermocouple (Th,)



3

and that with the lower amplitude by (Th,). The waves propagated in a sample of methyl
polymethacrylate. B

The following quantities were obtained numerically by measurement: the averaged
amplitudes (4, A,) of the heat waves, the averaged difference in phase angles (@), the
circular frequencies of the waves (w), the distance (/) from point x; to x, in the sample,
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Fig. 2. Heat waves, recorded in the points x; = Lo and x; = Lo+/ of the solid rod respectively
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as well as the radius (R) and length (L) of the latter. The ThD coefficient, cooling constant,
HTC and heat loss coefficient were calculated from Eqs (15) and (19) — (21). respectively.

For investigation, we used methyl polymethacrylate samples in the shape of cylinders
with a diameter of 2R = 0.4 cm. and length L = 3.0 cni. The ¢ircular frequency of the
heat waves amounted to.w = 0.017 s~ and the distance between the points x; and x,
of the rod to / = 0.55 cm. At these points, two holes were bored ‘in the sample into which
the copper-constantan thermocouples were introduced. The position of the holes with
respect to the heated surface of the rod fulfilled the conditions spemﬁed in Ref. [22]. For
the thermocouples, 1is¢ was made of sufficienitly long leads, 0.005 cm in diameter. The
methyl polymethacrylate rod with micro-heater, thermocouples and heat receiver attached,
was placed inside a vacuum holder, similar to the one proposed earlier by Krajewski [23].
The arrangement permitted the introduction of various gases at well defined pressures
into the holder cavity. The temperature of the vacuum holder cav1ty was varied contin-
uosly by means of a Hoeppler ultrathermostat.

Our investigation of the ThD coefficient, cooling constant, HTC, and heat loss coef-
ficient was performed in vacuum, air, oxygen and hydrogen at room temperature. The
three gases were at a pressure close to normal. The results obtained for the 4 quantities,
measured in methyl polymethacrylate at 293 K, are given in Table I. .

In the presence of .the external gaseous media applied, the numerical ThD values
measured refer to a solid-gas system. This is particularly important in the gas is,hydro:ge}n,“
since in this case the experimental ThD value is by one order of magnitude larger t“hanj
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TABLE 1

Numerical values of the thermal diffusivity coefficient &, cooling constant 3, heat transmission coefficient
and -heat loss coefficient G of methyl polymethacrylate at 293 K in vacuum and in various gaseous media

Solid . k B a G External Pressure
investigated cm?[s i st Wicm?deg W/deg medium N/m?
2.1x10-3 10-2 1.24x10~* | 4.70x 10~ ‘ vacuum 0.68
Methyl 2.2%10-3 10-2 127x10-* | 4.79x 10~
polymétha- 2% 27 % 79 x ‘ oxygen 103360
crylate 2.3x1073 10-2 1.29%x10~* | 4.86x 104 i air (dry) 103360
123x 1073 | 2.5x 10~2 3.03x 102 |11.50x 10-* | hydrogen 103360

in the case of vacuum. The heat losses through the mantle of the sample rod are now large
compared to the losses in vacuum since the ThD of hydrogen at normal pressure is com-
parable to the ThD of silver. In agreement with theoretical predictions, the HTC, heat loss
coefficient and cooling constant now become maximal.

The ThD of methyl polymethacrylate, measured in air and in oxygen, differs but
slightly from the ThD measured in vacuum, the relative differences amounting to 10 and 5
per cent, respectively.

Methyl polymethacrylate is the polymer most commonly applied for technical pur-
poses in the temperature range from about 293 to 353 K in air. We expect the polymer to
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Fig. 3. Thermal diffusivity & and cooling constant 8 of methyl polymethacrylate vs temperature

be applied as a shield for desoxyribonucleic acid DNA in future studies of the thermal
properties of the latter. This was one of the reasons which stimulated us to carry out addi-
tionally a study of the temperature-dependence of the ThD, cooling constant and HTC
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of methyl polymethacrylate in the above specified range of temperatures. It was absolutely
necessary to determine all the thermal properties of this polymer, all the more so as
such information was not available from the literature. Further on, we give the dependence
of k, B, « and G vs temperature for methyl polymethacrylate.

The curves of Fig. 3 show the ThD coefficient k and cooling constant f of the polymer
as functions of temperature (full circles denote experimental k-values, void circles —
experimental f-values). One notes that k incrcases linearly from 2.24x 10~ cm?/s at
288.5 K to 2.80x 10~3/s at 353.3 K.

The temperature-dependence of the cooling constant B is also linear. For the above
temperatures, § amounts to 0.094 s~* and 0.15 s, respcctively, and the ratio f/k to

w "
otz 0 o[ats] ¢
r f |Mefhy1 polymethacrylate
o a=afT) | u/

0 e G=6(T) y/‘
220 2] 660
bl .

/
o/
il
7

180 . '

= 600
7/
=]

140 Zast 5.20
100 B J 4.40

] 0 20 30 40 50 60 70 80 TL°CT

Fig. 4. Heat transmission coefficient o and heat loss coefficient G of methyl polymethacrylate vs temperature

41.9 cm~2 and 53.6 cm~2. The increase in f points to larger and larger heat emission
through the mantle of the rod into the surrounding medium. '

The curves of Fig. 4 show the HTC « and heat loss coefficient G through the mantie
of the methyl polymethacrylate rod as functions of temperature. Both « and G are linearly
dependent on temperature in the range studied. For o we found 1.22x 10-* W/cm? deg
at 288.5K and 1.89%x 10~* W/cm?® deg at 353.3 K. For G, we obtained respectively
4.58% 10~* W/deg and 7.12x 10~* W/deg.

4. Conclusion

Investigation of the thermal diffusivity of solids by the dynamical periodic heat wave
method of Angstrom permits the simultaneous determination of their thermal diffusivity,
cooling constant, heat transmission coefficient and heat loss coefficient, in cases of met-
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als, semiconductors, as well as dielectrics. Once the cooling constant (thermal diffusivity
ratio) is known, conclusions can be drawn concerning the variations of the specific heat
and thermal conductivity: of the solid.

The author wishes to thank Professor Dr. habilit. T. Krajewski and Docent Dr. habilit.
A. Pilawski for their valuable discussions and advice.
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