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Generalized form of the diffusion equation is derived from non-Hamiltonian dynamical
laws. By application of projection operator method the generalized diffusion equation for
the generic configuration distribution function of a system of N, immersed particles with
arbitrary degrees of internal freedom is obtained. Next it is shown 'that, if eﬁ‘ective'quantum
'mecham'cal‘ poteﬁtials are introduced, a diffusion theory for quantum systems can be formu-
lated with the same conceptual simplicity as has been done in the classical ‘case. ‘Approxi-
mations leading towards the ordinary, local and Markovian diffusion equations.are discussed.

1. Introduction

A considerable attention has been given in recent years to the statistical mechanical
study of transport processes:of diffusion type. The common Kirkwood-Riseman theory
[1-4] of Brownian motion in the configuration space of the systems ‘particles was not able
to provide a rigorous Justification of the generalized type of diffusion equation. The basic
results of this theory are obtained by a fsomewhat heuristic. procedure consisting in the
assumption that the frictional, external ‘and intramolectilar forces are balanced by a
“diffusion” force derivable directly form the position distribution function.

Therefore, many attempts were made to derive the equation of motion for the position
distribution function starting directly from fundamental statistical theories. Significant
progress was achieved in 1965 when one .of the authors [5] (see-also [6, 7]) was able to
derive the diffusion equation for the configuration distribution function for a classical
system of structureless particles immersed in a structureless solvent on the basis of the
Lebowitz-Bergmann theory [8] of irreversible Gibbsian ensembles. Starting from an
appropriate integro-differential equation, which contains both the terms of the ._Liouyille
equation and a stochastic terms describing the interactions with the surroundings a rigorousf
diffusion theory was developed.’ Furt_hero’n in that paper a derivation of diﬂfusion equa-
tion from the Liouville equation for closed systems was given. Some years later Alten-
berger [9] derived the generalized form on the Kirkwood-Riseman diffusion equation.
from the appropriate Liouville equation by applying a similar projection operator method.

* Address: Sektion Physik, Wilhelm Pieck-Universitit, Universititsplatz 3, 25 Rostock, GDR; g
(329



330

In this paper we address ourselves to the following problems: In Sec. 2, we extend
the above mentioned theory (see [5]) to the derivation of the generalized diffusion equation
applicable for the determination of the generic configuration distribution function of
a subsystem of N, immersed particles with arbitrary degrees of internal freedom cor-
responding to structural constraints. In Sec. 3, we turn towards the task of deriving the
generalized diffusion equation describing the dynamical properties of a quantum
mechanical system of particles. The derivation is based upon the non-Hamiltonian quantum
mechanical theory developed by Ingarden and Kossakowski [10, 11].

In both the classical and the quantum mechanical cases the complete system composed
of the subsystem (1) of N; immersed particles and the subsystem (2) of N, solvent particles
(N, < N,) is supposed to be open, i. e. to interact with its surroundings represented by
a thermal reservoir of the temperature T. As a consequence, the dynamics of the entire
system is determined by a non-Hamiltonian egquation of motion

(©loye = Lo, (1.1)

where . is a non-Hamiltonian Liouville superoperator and g stands for the phase-space
distribution function or the density operator of the complete system, respectively.

The derivation is based on a projection operator technique [12]. By means of the
projection operator G, G2 = G the quantity ¢ is separated into relevant part o' and
irrelevant part @'/,

0= o' +0", o = Go, ¢" = (1-G)e. 1.2

Applying the Laplace transforms one can easily obtain the following master equation for
the time change of o’

(@/0n)e" = GL{' )+ ANe"(0)+ (f’ dt A(t—11) (1= G) L (1)} (1.3)

where the propagator 4 is given by

A(t) = (1/27i) | dz exp (z1) [z—(1—-G)Z] ™" (1.4)

Characteristic for the structure of the above master equation is its non-Markovian form,
and the fact that the irrelevant part only enters through its initial value.

As we are interested in molecular movements of diffusion type the relevant part o
will be connected with the probability density o,(Q", #) at time ¢ in the configuration
space Q" of the N, immersed particles. We consider the molecular motions as motions
of diffusion type if there exists a closed and causal description of the configuration
probability density for all ¢ > #,, when an initial state 01(0W, 1) is given. This evidently
means a strong restriction to the dynamics of the entire system which nevertheless is
fulfilled by a wide class of physical systems.
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2. Derivation of the generalized diffusion equation for a system of classical
particles with arbitrary internal degrees of freedom

Let us consider a system consisting of N, immersed particles and N, solvent particles,
which is in contact with a thermal reservoir of temperature 7. Both subsystems are made
up of molecules with arbitrary degrees if internal freedom corresponding to structural
constraints. Because of the latter the numbers n; of degrees of freedom are

m <3N, i=1,2, @2.1)

where the subscript 1 indicates the subsystem of the immersed particles and 2 stands for
the subsystem of the solvent.

Let O” represent the set of generalized coordinates of the ith subsystem and P be
the set of the corresponding conjugate momenta. We also use the more concise notation

0 ={0", 0¥} (2.2)
for the complete set of configuration coordinates,
P ={PY, p2 (2.3)

for the complete set of momentum coordinates, and
X ={Q,P} 2.4

for a point of the phase space of the entire set of molecules. The state of the ensemble is
then described by a generic distribution function Ony+n, (X, 7) in the phase space of
the system which is normalized so that

."@N1'+N2(X7 t)ng = 1: (2.5)
with dXg the generic phase space volume element given by
dXg = [R" N IN, 1] 1dx. (2.6)

We assume that the temporal evolution of this distribution function is described ade-
quately by an integro-differential equation containing both the terms of the Liouville
equation and a stochastic integral term that describes the collisions with its surroundings,
1. e. the temperature bath,

(0/0)on,+n (X, 1) = {Hy, s 5, 0N +no} + .f[QN1+Nz(X/)K(XIX)
— 0w, +n(X)K(XX")]dX g, )
where {...} is the Poisson bracket,

Hy .y, = TN1+N2(X_)+ Va,+n,(Q) (2.8)

is the classical Hamiltonian_, the quadratic form

2 n‘ : i » 2 » * *
Tyew, = Ty, + Ty, = ;1 %IMZ;I Clnpi"py) = =Zl 3 (COPY, PO, 29)

i
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with
u MO MO
; : : , ory)  or;
() o~ J ., T
Cp = m; W aqg) > (210)
J=1 =7

the Kinetic ehergy, and Vy, .y, the potential energy of the system. Now we introduce the
following abbreviations

(a/at)@N1+N2 = Boy,+n, = Loy, +n,+ S0+, 2.11)

where L is the real Liouville operator, which determines the internal motion of the system,
and S is the collision operator responsible for the interaction with the thermal reservoir
described in terms of impulsive interactions (collisions). The. transition kernel K(X'X)
represents the probability density per unit time that, the representative point of the system
known to be at location X", will be thrown in volume element dX at location X. The stochas-
tic kernel K(X'X) is assumed to be independent on time. As shown by Bergmann and
Lebowitz [8] the condition to be obeyed by K(X'X) which is both necessary and sufficient
for the approach of the ensemble density to canonicity is

§ {exp [~ BHy, +n,(XV]K(X'X)—exp [ — BHy, + n,(X)IK(XX)}dX" = 0, (2.12)
since
{exp [—fHy,+x,]; Hy iy} =0. (2.13)

Furthermore, we assume that the effect of the collision operator is to transform only the
momenta while the precollision and postcollision configuration coordinates are identical,
i. e.

K(X'X) = vd(Q — Q) k(P'P), 2.14)

where the quantity v has the dimension of a frequency and is responsible for the strength
of 1nteract10n between the system and the temperature bath.

" Since we are interested in the distribution function Dy (0™, 1) in the configuration
space of the immersed molecules, given by

DN1(Q(1)7 t) = ,” dQ(Z)dPgQ.Nl +N2(X: t)s' (2'15)
with
dP, = [h™*™N,IN,1]~ dP, (2.16)
the projection operator G is chosen to be

G = ¢o ffdQ®dP,, : @
with

Po = OF +x/DRY : (2.18)
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where oyi+n, and D§! the corresponding equilibrium distribution functions are denoted.
It is easy to verify that G has the desired property to select Dy, (up to a known function),
and that it obeys the fundamental requirement of a projection operator G2 = G. (Strictly
speaking G is merely an idempotent operator which is not Hermitian in general. However,
we maintain the terminology of projection operator technique as it is widly used in recent
publications). Under these circumstances one can prove the following identities

CGS =0, (2.19)

; S(poDy,) = 0, (2.20)
and

GL(poDy,) = O. @2

We find, furthermore,

f f dQPAPLF(X) = Z a% [cfd” f dF(~p) J‘dQ‘Z’f(X)J, 2.22)
k

and

1

S d 0 '
L(goDy) = > (—peir’po | — — z—In D3, | Dy,. (2-23)
gy - Oy '

kl=1

Egs. (2.19)—(2.23) are obtained under the assumption that the operators G, S and L act
‘in the Hilbert space of all quadratically-integrable functions, i. ¢. any function f(X) of this
space approaches zero sufficiently rapidly for lIarge values of the momentum coord_inate§
and those configuration coordinates which have an infinite range, Takin-g into account the
last five expressions Egs. (1.3) and (1.4) take the form

ny

(0/68)Dy, (@, 1) = E . o2 Ckmf dPy(~pm) Jde {A('t)ez'\?,uvz(o)
_ 3 |

vt ny
! e o 7
+ = | dedA(xfv) » (=Penpo| = — —In Dfﬁ] Dy, (Q(l) = -)} (2.24)
v : | 6ql aq, ’ . Vv
0 In=1 N

and, respectively,

A1) = (1)2ni) | dy exp (vyt) [y—L[v=87"7", (2.25)

where the substitutions © = v(t—¢,) and z = vy were introduced and by definition

L'=(1=6)L (2.26)
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and _
S =5". 2.27)

In most works using projection operator technique the vanishing of the contribution
of the initial condition is almost always assumed, not proven rigorously. However, for
most non-equilibrium studies one can suppose that as a consequenée of its internal dynamics
{13] the system has no memory of its initial state. In the particular case when the initial
distribution function is given by

ony+ (X3 0) = FQ™)of% 4 nss (2.28)

where F(QV) is an arbitrary quadratically integrable function in the configuration space
of the 1st system, the source term vanishes.

Eq. (2.24) is the exact form of the general diffusion equation describing the motion of
the configuration density Dy,(Q'", t) according to the dynamics in consideration. The
second term on the right-hand side of the latter equation, termed the memory term,
is both non-local in space and non-Markovian with respect to time. At this stage we simplify
our original model considering the subsystem of the N, solvent particles as identical with
the thermal bath, or what is more general, as constituent of the latter. This simplification,
which is formally represented by N, = 0 is, of course, not necessary but it proves very
useful for a more detailed discussion. For the solvent is now treated as a continuous heat
bath, which interacts with the immersed particles by stochastic collisions of frequency v,
an expansion of A(f) in powers of v=* is appropiate in the limit of large interactions. If
¢t> v~ and we furthermore assume that the system has no “memory” for its history, the
expansion of the distribution function Dy,(t—7/v) in powers of (z/v) can be carried out.
Restricting ourselves to terms of order v—! in the memory term and assuming that the
initial distribution is given by (2.28) we obtain a local and Markovian equation for the
time change of Dy,

ny

e
/00D, (@, 1) = 5 - ckmj dPg™(~p,)
k

k,m=1

ni

vt
1 : : i} b
X — JdTAo(T) (= Dpa)Cun®o [—' ——In D?vqil DM(Q(I), 1)) (2.29)
y J oq, O0q

In=1
with
Ag(7) = (1)2nd) § dy exp (y7) [y—-S'T"" (2.30)

and

po = en/Di- (2.31)
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For a detailed explanation of the transition from the non-local and non-Markovian Eq.
(2.24) to the local and Markovian Eq. (2.29) see [5]. At this point we introduce the generic
distribution function gy,(Q™, 1) given by the renormalization

en (@, 0gi”? = Dy, 1) (2.32)
with g, the determinant
g1 = [{gl’}| (2.33)
of the metric tensor {g{;’} of the Q‘"-—configuration space given by
"
g = Z Z_;ﬁl—) : 5(};—1), (2.34)
=1 |

where r j represents the three Cartesian coordinates of the J-th mass boint‘ As the volume
element dr, of the Q" —configuration space is given by

dry = gi?do™. (2.35)

This is the most suitable renormalization of the distribution function in question. Taking
into account that the quantity (8/dg,) In Dy, from Eq. (2.29) can be expressed in the form

(0/6q,) In DY, = BK;+(8/0q,) In g}’ (2.36)
with K the mean generalized force given by the following average value
K, = [ dPgo3(~0Vy,/0q,)/D5, (2.37)

one obtains the generalized diffusion equation for the generic configuration distribution
function of the immersed molecules in the final form

1 : o ,_ 0 ou
910 W p = = D. | = —_— Wy, 2.38
(0/ot)on, (R, 1) N E V81 Dy [aq, +8 aq;] on, (@77, 1) (2.38)
k=1

where the generalized diffusion tensor D,; is defined by

ny .
Dkl = Z (l/znl)ckm,f dPg(l)J dypm[S"‘J’]Pn‘Pocln[l“eXP (th)]/J’V, (239)
mun=1 a
assuming that it approaches a time independent value as goes to infinity. In the convective
part arising from K, we have introduced the potential of the mean generalized force U

in the following convenient way
K, = —(0/0g)U(Q™). (2.40)

The results obtained in this section are applicable to any type of immersed molecules,
flexible or stiff, linear branched or ring shaped, corresponding to the imposed structural
constraints. In particular they may be of interest for the investigation of dynamical
properties of important polymer (biopolymer) solutions.
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3. Quantum mechanical derivation of generalized diffusion equations

According to the introduction in this section we consider an open quantum system,
composed of N; immersed partlcles (subsystem 1) and N, solvent ‘particles (subsystem 2).
For simplicity the particles are assumed now to have no degrees of internal freedom. The
statistical properties of the complete system are given by the density operator gy, +n,
which is assumed to be normalized so that Tr(gy,+y,) = 1. The time evolution of the
density operator is determined by a non-Hamiltonian Liouville operator %, which has
a Hamiltonian part

(a/at)QN1+N2 = ZLon+N, = (—i/h) [H, QN1+N2]+‘@9N1+N2’ 3.1y
where
p.z .
H= % + Villri=r;0) (3.2)
1<i<N1+N2 ! 1<i<j<Ny+N2

is the Hamiltonian determining the.internal dynamics of the system, and the dissipator 2
arises from the interaction with the systems surroundings, represented by a thermal
reservoir of the temperature T (see [10, 11]).

Let us denote the matrix elements of the density operator in the coordinate-spin repre-
sentation by

{SiRy; SszlQN1+N2|S'1‘R’13 S3R5>, (3.3)

where S, represents the totality of the spin variables (o4, .. aNi) of the i-th subsystem,
and R, stands for the complete set of its Cartesian coordmates (FioPay-Py) i=1,2.
Now we wish to extract an equation determining the time dependence of the quantity

01(Ry; 1) = (;) {S1Ry|on,|S1R1>, (€X))
where the reduced density operator gy, is defined by

on, = Tr (on,+n,) . (3.5)

in which Tr indicates the partial trace over a complete set of variables of the solvent
@

subsystem. At this point, instead of rewriting Eq. (3.1) in terms of" the matrix elements

(3.3) and defining the dissipator operator 9 in the coordinate-spin representation, with

the aim of the well-known Wigner transform W [14]

W{SR| gy, +3,|S'RY = (2m) " *®+*¥) { dr exp [i(I', P)]

X h | |
X <S, R+ ?F ON1+N2 S,,.R— 7F>, (36)
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where by R we have denoted a._ complete set (R, R;) of the system position coordinates,
and by S the complete set (S,, §2) of spin variables, we carry out the transition to the
quantum mechanical equation for the quasi-density function Fy ., w(SS"; R; P; £) and
define 9 in'terms of the Wigner repesentation. Thus we have
Ni+N> N
@OIo0Fwn(SS3 R P = = > P D p (siR: by
i i

Ni+Ny Rk R
+(i/2n)°h) | d7 2. §dpi [ dpio(Pi+ 5 —pi—b,) exp {—i(3/2)
. L)
X[Bi=P)~Bi= BT} [Vy(Fi—F 3 W) ~ V(77— 3 42)]
XFN1+N2(S; S’Q R5i;1 l—;i—1;z{l_;i+1 ;j—l;};j+1 1—”N1,+N2§ 3}
+DFy, . ,(SS8'; R; P; f). (3.7

As the problem of determining the dissipator operator in the general case is very difficult
one, the influence of the systems surroundings is taken into account by defining in the
Wigner representation a dissipator of the following simple (linear) form

DFy, +n(S58'; R; P; 1) = v[@601(Ry, )= Fy, 4 n,]- (3.8)

Here ¢, represents the quotient Fyi+n,/01 with Fgl, . the equilibrium quasi-distribution
function

F3 1 5,(SS's R; P) = W(SR| g5, SR (3.9)
and
oni+n, = (1Zy, +y,) exp (— BH) . (3.10)
the equilibriﬁmj density operator, where '
Zy,+n, = Tt [exp (= BH)] (3.11)

is the (N + N,)-particle partition function. According to the definition (3.4) o} is written
as follows : - ' o

0T (Ry) = (SZ) {SiRy| g: (Zz;llfzvz exp (—BH)) [S{R;). (3.12)

The parameter v has the dimension of a frequency and is responsible for the strength of
interaction between the system and the temperature bath: As it is necessary for the system’s
approach to equilibrium, the source term (3.8) vanishes for the canonical quasi-density
function Fyd, .. v ‘

As a matter of fact, the Wigner function Fy, +n, cannot be interpreted as a phase-space
density function but, nevertheless, it has a formal similarity to the classical phase-space
density and-its.equation of motion possesses a striking analogy with_its classical counter-
part. This remarcable parallel will allow us to apply most of the technique which proved
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successful in the classical theory of generalized diffusion equations. And this is the essential
motivation for using Fy, +y, @8 an auxiliary function.

The remainder of the derivation is similar to the derivation ‘in the classical case.
Employing again Zwanzig’s projection operator technique we define the projection oper-
ator G by

G=goY Y &SS)fdR, ap (3.13)
® &)
with @, defined above. It is then easy to check that G has the desired projection property
G = G2 and that for any function gy,.n, of the form ‘

gn.on(SS's R; Ps 1) = f(Ry, OF5 4 ni(SS'3 R; P) (3.14)
‘holds
Ggy,+N, = ENy+ Ny (3.15)

Now in analogy with the classical case we abbreviate the first term of the right-hand
side of Eq. (3.7) to L'Fy,.+n,(SS"; R; P; 1) and term L™ the free particles Liouville
operator. Respectively, the second term is abbreviated to LM Fy, .y, (S8'; R; P; t) and
L") is termed the interaction Liouville operator. Now Eq. (3.7) can be rewritten in the
more concise form

(0/o)Fy, 4, = (L(T)+L(V))FN1+N2+DFN1+N2 = (L+D)Fy, . (3.16)

with L the quantum mechanical Liouville operator defined as the sum L = L™ +LY).
The following identities can be proved to hold in the Hilbert space of all quadratically
integrable functions
GLG = 0, 3.17
GD=DG=0, (3.18)
N3

f‘dRz JdPLf(R; Pt = Z;: : JdRz [dP(";i/mi)f(R; P;1) (3.19)

i

and
Ny
" 0 0 -
LGFy, 4y, = (—pj/m)eo P — — In 07'(Ry) | e1(Ry, ) (3.20)
rj ar]
j=1
Substituting the last expressions into Eq. (1.3) we obtain the following equation for the

time change of o;(R;,?)

Ny

0/o)o (R, 1) = Z a% c J-dt’ Z Z 5(SS’)JdR2 JdP

i=1 (&) ")

Ny
= G, 0
x (—pi/m)A@E—1) Z (—=pjimpeo [5;? - In Qiq(R1):| 0i(Ry,t)  (321)
FET! J J
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with the propagator 4 given by
A = (1/2mi) | dz exp (26) [z=(1—G) (L+D)]". (3.22)

In the above equation the contribution of the initial value Fy, +5,(0) vdnishes since we
have imposed the initial state to be of the form (3.14).

Let us now call our attention to the second term in the brackets on the right-hand
side of Eq. (3.21). It is apparent that the convective part of our generalized diffusion
equation is due to the inhomogenity of the equilibrium function o$%(R,) arising from the
interparticle interactions. Following a method developed by Morita [15] it is possible to
reduce the calculation of the latter quantity to the corresponding classical problem. The
crucial point of this theory is the replacement of the Slater sum Sy, +n,> defined by

N{+N,

SN1+N2(R)=(§)<S;RI exp (—BH) [S; R) 1;[1 43, (3.23)

with 4; the de-Broglic wave length of the i-th particle given by A; = h[2zm kTT/2,
by the Boltzmann factor, according to
Sny+n(R) = exp [ B Un,+m(R)]. (3.29)

The effective (quantum mechanical) potential Uy, .y, is expressed in terms of the many
particle effective potentials Uy by the identity
UN1+N2(R) = Z uij+ Z uijk+ 000 +ui1i2...iN1+N2’ (3‘25)
i<y i<j<k
where the following connections with the many particle Slater sums S,, ..., Sw,-n,
exist

Sa(riry) = exp [—ﬁ”ijl

Ss(;:ia ;j, ;k)S;I(;:irj)Sz_ 1(;:irk)S; 1(?j;k) = €Xp [_Buijk]’

Sw, +N2HSI;I—11~i~N2 -1 = €Xp ["ﬁ“il e (3.26)
However, in many cases of practical interest only the two-particle effective interactions uy;

are of relevance
uy; = —(1/B) ln'SZ(;irj)' (3:27)

After Kelbg-Ebeling-Hoffmann [16-19] we get in the case of weak coupling (restric-
tion to linear terms in the two-particle interaction potential V; j» S€€ (3.2)) near the classical
limit, i. e. taking into account terms of first and second order in h2 only, the following
expression for the many particle Slater sum

N
Sn(R)=eXp{—ﬁ Z Vii— %Z(ﬁﬂﬂ)& Z Vi
k=1 1

1i<j<N <i<j&N

N N
- %ﬁ;— Z Z (A A,2m)* A 4, Z Vij"‘o(h6)]- (3:28)
k=1 I=1.

1<i<j<N
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From the combination of Eqgs. (3.24)-(3.28) follows that beside the “classical” part Vy;
the two-particle effective potential contains a quantum mechanical correction of the

form
?M=— E (Ak/ZTC)AkVu"i' 3 E E (Ady27)* 44,V +O(R®),  (3.29)
J

ke{i.j} kleli,i}
whereby

Now using (3.24) we can identically rewrite the qqanti_ty ‘Q‘i}q(Rl)‘in the form

TRy = j dRz exp (_ﬁUN1+Nz) U dR exp (—BUy, +N2)]_1 (3.31)

which is analogous to the expression for the classical configuration dens1ty D3 of Sec.2
supposing structureless particles. According to Eqs (2.37) and (2.40) we can now introduce
the mean effective (quantum mechamcal) force K through the average value’

I RN | 6U 1. . o . B
= dez exp [~FUy, o] (— —g;—) [f dRy exp (— U )] ™" (332)
and the effective (quantum‘mechanical) potential of th_e inean effective force
(@17 )Ux,R)) = —K,, (3.33)
respectively. Evidently the above definition is identical to
[ dRySy, s n,(R) = exp [~ BUx,(R1)]. (3:34)

We term the expression

Ni+N3z -

SO = dezsN1+Nz(R) Z)<S1R1|Q§1|S1R-1> l_—Il Aia. (3.35)

the reduced Slater sum and introduce in the following the many particle effective potentials
of the mean force ¢;y, . through :

z ¢l,] o Z ¢t,)k+ .+ ¢i1 e ing® ) (3'36}

i<j i<j<k

In analogy to (3.26) the effective potentials of the mean force are defined by the reducé:d‘
many-particle Slater sums S, S, ..., S# according to

S(z)(ij) = €Xp (—B%:;)s
SOijk) [SP(ij)SPAik)SP(jk)] ™ = exp (—BBipds

SHOI[ST D] = exp (—BPi, - iny)- (3.37)
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In order to point out the non-local character of the generalized diffusion equation we
now want to make use of the integral representation of the propagator A(¢). Let us define
the kernel K(RPt|R'P't') corresponding to A(t—1") through

A(t—t)f(R, P, 1) = [[ dRdP'K(RPt|R'P't)f(RP't"), (3.38)

where f(R, P, t) is any quadratically integrale function. © _

Let us now pass on to the derivation of the normal diffusion equation. For this
purpose it is necessary to impose the following very essential conditions. Firstly, we require
the de Broglie wave length of the particles to be small compared to the distance character-
izing the two-particle interactions (say ro is the location of the two-particle potential
minimum), i. e. )

h[2nmkT] ™% < »,. (3.39)
It is easy to understand that if (3.39) is not fulfilled the particle movements would be deter-
mined by the complete dominance of quantum effects. Furthermore, we suppose that
the kernel K(RPt[R'P't") converges rapidly to zero-if
ir,-—r:l > lo, i= 1,2,..., N1+N2 (3.40)
and
—t'> ty,
where /; and ¢, are thought to be small quantities, or put into words the “memory” of the
kernel X is restricted to time periods of size to, While its non-locality spreads over regions

of volume 3. We transform now the integrations over ¢ and Rj in (3.21) [see also (3.38)1
to the new variables

T=(t—t)ty, &= (Ry—R))/l,. (3.41)
After expansion of the expression
[0/0F;+(0/0F U (RDTes(R, 1)

in powers of ¢, and /, and restricting in the integral only to terms of first order we obtain

Ny t/to B . :
0 ) '
0/0004(R,, 1) = _5_ =1y f dr E E 5(SS") f dR, j dp
ri :
i=1 0 ) (5) .

x (=pifmy) § dP'(1)*™* | do [ dR,K(RPt|R'P'0)

Ny
- 5 aUN (Rl)
: —pi/m; =+ —5—|0:(Ry; 0). 3.42
xZ( Biim))go [a;,f 5, Jel( 1) (3:42)
=1 g
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Now coming back to the old variables (see (3.41)) we introduce the generalized diffusion
tensor Dj;(t) by :

D) = (;) (/S‘;) 5(SS') § dP [ dR, | dP' [ dR’ | dr'(—=pimy)

x K(RPt|R'P'0) (—p}m;)@o(R'P") (3.43)

and suppose that for large # it approaches a time independent value D;; Combination of
(3.36) with (3.42) and (3.43) yields finally the normal form of the generalized diffusion
equation

Ny Ny
0 0 S
@JoDe:Ry, 1) = z b, {—. 8 Z (06,67

r; or;
i,j=1 k=1
k%))
‘ 3
+B z Z (a@jkt/57j)+ ... +P(0%;, ...im/a;:j)} . (3.44)
k<l

<
k#jl#E))

Eq. (3.44) has a striking analogy with the classical generalized diffusion equation (2.38)
from Sec. 2. However, in spite of this structural similarity Eq. (3.44) differs essentially
from its classical counterpart through the quantum effects manifesting themselves in the
generalized diffusion tensor Dy (see (3.43)) and particularly in the effective potentials of
the mean generalized force @y ... (see (3.33)) in connection with (3.36). Note that the
validity of the guantum mechanical diffusion equation is essentailly connected with
assumption (3.39) implying that the system’s particles are concerned to be localized over
distances of the order ro.

4. Discussion

In our opinion, the results of the present paper may be of interest for several reasons.
First, starting from basic statistical theories the existance of transport equations of diffusion
type is justified. Second, the theory presented here gives us the possibility of analysis of the
approximations involved (see Sec. 2, 3) and, in this sense, the chance of improvement
of the theory. In Sec. 3 it was shown that if effective quantum mechanical interactions are
introduced a diffusion theory for quantum systems can be formulated with the same
conceptual simplicity as has been attained in the classical case.

Next we want to call attention to the problem of irreversibility involved in out theory.
As is well known almost all derivations of transport equations (in general sense) face
a difficulty connected with the contradiction between the irreversibility embodied in the
final equations and the reversible character of the basic equations of motion. Starting from
Hamiltonian dynamics, by means of a procedure of decoupling (as that of neglecting
graphs or pertubation terms) irreversibility is just produced by reversibility. This is, of
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course, mathematically contradictory, since the concept of dynamical semigroups is
essentially more general than that of dynamical groups, cf. [10, 11]. The advantage of
our theory consists in the fact that at the very beginning we consider dynamical laws
of the form proposed by Lebowitz-Bergmann [8] and Ingarden—Kossakowski [10]

Ofor)e(t) = Lo(o),

where & is a non-Hamiltonian Liouville superoperator on the Hilbert space corresponding
to the system. Thus the irreversibility of the final diffusion equations is in complete accor-
dance with the irreversibility of the basic equations of motion. However, in recent time
Prigogine and co-workers [20] have presented some new investigations which permit
to understand the conceptual problem of irreversibility in a new perspective. They show
that kinetic theory, and as a consequence the approach to equilibrium, may be linked
to dynamics of a well defined class of initial conditions. Starting from a certain (minimal)
level of dynamical complexity the irreversibility of most general physical systems is the-
oretically justified.

Part of this paper was done during the authors’ stay at the Nicholas Copernicus
University, Torufi, Poland. The authors wish to express their gratitude to Professor R.
Ingarden and his collegues for the hospitality payed to them during the period of their
visit in the Institute of Physics.
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