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The aim of this paper is to present the transformation of the Larmor—Lorentz principle

in an uniaxial anisotropic medium for the Wiinsche formulation to the form analogical to

+ Kottler’s formulas for the isotropic case. The equivalence of those two formulations for the

isotropic case was proved by Rubinowicz. The paper also contains the wave’s potential for

an electromagnetic field in the examined medium, which is of fundamental importance in the
Young-Rubinowicz model of the diffracted phenomena.

1. Introduction

In this paper we consider an electromagnetic field in a medium which is magnetically
isotropic and has uniaxial electrical anisotropy. SI units are employed, and &, and U,
stand for the dielectric constant and magnetic premeability of vacuum, respectively. We have
assumed the coordinate system X;, X,, x3 in which the axes of the system are principal
axes of the relative dielectric tensor. Thus, it can-be represented as

t = f81+(e3—81)§l-€, (1.1)
where 1 stands for a umit tensor and Kk for dyadic. The unit vector % lies in the direction
of the xj-axis. & and &5 stand for the relative principal dielectric constants. Magnetic
features of the medium under consideration are described by the relative permeability
tensor

i

1 (1.2)

=W

where u stands for relative permeability.

The Larmor-Lorentz principle was take as a basis for this paper, since it enabled us
to express the state of the monochromatic field at point P by values of the field and its
derivatives at ‘all points Q of the surface surrounding the considered point.
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In the case of the anisotropic medium, the tensor Green’s functions were found by
Wiinsche [1] There are two tensors for the uniaxiall anisotropic medium: electric tensor
Green’s function and magnetic tensor Green’s function. The equations, which satisfy these
tensor functions have the following forms:

VX"l (VX GP)—k2E - G = 5P, Q) (1.3)
e - (V% G~ ki - G = Jmes(p, ),

where &' and pi~! are inverse tensors for the dielectric tensor and the magnetic perme-
ability tensor, respectively. The subscript / denotes the column number of the tensor.
The physical sense of the quantities J;' or ™ appearing in (1.3) is as follows: Js' = 7 is
the electric current density, T is a unit vector of the appropiate axis of the chosen system of

coordinates. 5(11, Q) is the delta function. j;™¢ = j™*] is magnetic current density. The
first column of G tensor corresponds to the unit vector i, the second one — to the unit
vector j, and the third one — to the unit vector %. k3 = w?eopto, where o is the frequency
of the field. )

The fundamental tensor Green’s functions G(E) and G(H) are functlons of two
points — that of 1ntegrat10n o and that of observation P.

Knowledge of the G® and G® permits one to write the Larmor-Lorentz principle
for the uniaxial anisotropic medium in the form )

E(P) = f TEQ) x7) 1 (V% G — iop(i x H(Q)) - 6P,
H(P) = dffiweo(EQ)x 1) - G — (i x H(Q)) ¢ 71 (Vx GI™)], (1.4)
S -

where E, and H, are the components of the electric or magnetic vector field at point P.
They are related to the tangential components of the electric and magnetic fields on the
surface S, which surrounds the examined area. This form (see (1.4)) of the Larmor-Lorentz
principlq was formulated for the anisotropic medium by Wiinsche [I].

. The explicit form of the tensors G® and G was found for uniaxial anisotropy by
Wiinsche [1] and may be written in the form

& 1 N 2y | exp (—ikoR,)
B = - — — VV +pie '
G o {[k‘ﬁ N + g3 ey € :, R

—»

LYz [v A T (~lk0R)):|1 (1.5)
kg 0’ I
= N (N 3| exp (= ikoR)
(€ V-
¢ in {[ks v ALY I] R

1 (e, T % _— . S
+ ‘i‘ [V xk ¢ Xz o lkOR)—" exp ('— lkORs))-J} s
lko u e
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where
R = \/‘;;[(le_le)2+(x2Q'"'x2P)2+(x3Q—x3P)2],
R, = \/ﬂas[(xm"x1P)2_+(x2Q‘:g)2]‘Hlaxsg—x_n)z,

0= [xu’“xyg, Xop—Xg], (1.6)

P / SR RY
o=lo| = \/(xw—xm) +(x2p—X20)%
We regard xp, X3p, X3p and X1, X29, X34 as coordinates of points P and 0, respec-

D o | 8 - e B '
tively. o~?k (o x k) represents the dyadic of two vectors: k and [(g x k) ——‘l V is an
0

operator of Nabel and VV is a dyadic product of two Nabel’s operators The unit vector
%k denotes the dlrectlon of an axis x3, which corresponds to the principal axis of the

‘dielectric tensor s

2. The Kottler’s formulation of the Larmor-Lorentz principle in the isotropic. medium

In an isotropic medinm &; = ¢; = ¢ and thus

R.=R= \/3H[(X1Q+x1p)2+(xég*xzp)2 '*Txag—xap)z]- (2.1)
We obtain a relation for the tensors G® and G® in the form

G® = £ gw, @22
e
and the tensor G® may be written as
2 1 N — 3 | exp (—ikoR)
GP = — — - VV+u./e 1] - =5 2.3
4n{[kws SC) i
This closed form of the electric Green’s functions is found in many textbooks [2].
The Larmor-Lorentz principle for the isotropic medium can be transformed into

Bep) = \/ e #df {E(Q) o exp(— ~ikoR) _exp (—1k0R) 0 (Q)}
ny R R anQ

4
(K)

[[gﬁv §exp(—ik0R)—>
VAR . .

L Ve § exp(le" ) BxT x dl)

—_
oH - dl, 2.4
4mik, R 24
(X)
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for the electric field, and

iy = Y ff arliicg) o1 IR R EER gy
S

R R dng

~

208 ex koR
0 p(Rl"—)aE a5

(6H % dl)+ - w—vp§

4r
(K)

+ \/l@ é; exp (— LkoR)
R HoH

for the magnetic field.
As we have seen, the field at the point P is defined by the contributions from the
surface integral, which are take from the closed surface. Tho se from the curvilinear integrals
are taken from the curve line of discontinuity in the fields Eand H [3]. The latter two are

described by S and SH. The curve line of discontinuity is on the closed surface of integra-
tion. The subscript P or Q in formulas (2.4) and (2.5) at the differential operator denotes
differentiation with respect to the point P or Q, respectively.

The expressions (2.4) and (2.5) are connected with Kottler’s formulae [4], which have
been formulated in Kirchhoff’s theory of diffraction of the electromagnetic waves. In this
case the line of discontinuity of the field is a screen’s edge.

The question is whether a similar form of the Larmor-Lorentz principle exists for the
uniaxial anisotropy medium. As it is shown below, stch a possibility exists for the medium
defined by (1.1) and (1.2).

These expressions are similar to (2.4) and (2.5). Some other ones were presented at
the International Symposium of Electomagnetic Waves [5]. Both of the formulations are
extensions of the formulae (2.4) and (2.5) for the case of an anisotropic medium.

The form found below is very useful for the application of the Young-Rubinowicz
diffraction model.

3. Kottler’s formulation of the Larmor-Lorentz principle for the uniaxial anisotropic
medium

To get Kottler’s formulation of the Larmor-Lotentz principle (1.4) for the uniaxial
anisotropic medium, we resolve any arbitrarily polarized incident wave into.two waves,
one of which is a wave of TE-type and the other a wave of TM-type. This division is taken
with regard to the distinguished ¢x1s of anisotropy, which is the x; axis,

The incident waves are written in the form .

E = EF+E™
H=HT®+H™ 3.1

and every case of the field TE or TM is to be treated separately.
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3.1. The case of the TE field
When the field in the medium is of the TE-type, the Larmor-Lorentz principle gives
us the magnetic field H at the considered point P in the form

H(P) = f dfit - {—H® xs ™1 (Vx G+ G x5~ - (Vx H™)}, (.1.1)

where the subscript /(= 1, 2, 3) — defines the different components of the field. The
evident feature of the vector G is the I’s column of tensor G and is as follows:

S _ NEN i) — 7 | exp (= ikoR)
G, {[’CO\/H e +ér e l] R

1 &1 Vx[ (ka)

y (exp (—ikoR)—exp (— lkoRa)):l (3.1.2)

One should notice, that in the case of / = 3 (i. e. where | = I_E) the rotational component
in (3.1.2) disappears and vector égH) takes a simpler form.

When we introduce (3.1.2) to (3.1.1) and use well-known vector indentities, we may
expresse the component of the field in the following form:

H(P) = \/ a2 0 exp (—ikoR) exp (- ikoR) oH*®
! J Ong R R ong
s

\/8111 # o [ . P ( RszR)( HTE)]
S

i\/e.80 " e O exp(—ikoR) :l
+ =— dfn-|V E
4nko /upo jf"f fn [ e < 0x, R

Ve - s 0 (kxD) @ : .
ik, \7;7 dfri - {Vgx | H™® B a;(exp(—zkoR)~exp(-—lkoRs)
S

) . - (kxl
4ni\15: 1\/11 # dfn - {VQ % [(k FH ™Y, (ézx_) (exp (—ikoR)—exp (~ ikORS))]}

1 . OH™ 5 - (kxi
4nz\l{j\/u#dfn'{va[ax3 ¢ (Qx )(xp(—zkoR) exp(-—lkoRS))]} (3.1.3)

If the functions E™®, H satisfied the regularity conditions on all points of the surface
S, then only the first of the integrals does not vanish and for the valuec of the field at
the point P we obtain ¢

_ e TE 0 exp(—ikeR) exp(—ikoR) 0 &
H(P) = Tn—ﬁ; df{Hl (Q)“*“ e = o — H, (Q)} (3.1.4)
S
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When the field is regular in all of the points of the surface, then the field is of the same
type as on the surface. Thus, the Larmor-Lorentz principle simply reconstructs the primary
wave. The situation, as discussed in the work [6], exists in the case of free propagation
of the field in the anisotropic medium when the diffracted bodies are absent. In the case
of diffraction on the objects with a sharp edge, the lines of discontinuity of the field
can appear on the surface of integration. This is the sitnation in the case of Kirchhoff’s
diffraction theory for electromagnetic waves and then the field at P-points equals

Hl(P) = \/ # df{HTE d eXp (“lkoR) exp (——_lk_(@ aH;FE}
4r s 5nQ R R anQ
& Ve foxp Cila) (0 x SH™) - dl 2180 0 exp (—ikoR ("koR) SETE- T
i R dnko \ it ) F

(K)

VE1 0" (k><l) i
+ W § 6_x;[ 7 (exp (—ikoR)—exp (—zkoRE))] OH dl

I— TEg | € (
o \/“T(SH V[ Q (exp(—lkOR) exp(—lkoRe))]

& (k x 1) dH™ -
B 4ni\liol\/ﬁ§[g o (exp (—ikoR) —exp (—ikoR))S = dl,  (3.1.5)
(K) X3

where
a‘i} TE

SH™® SETE GH™ and O
0x4

are the discontinuities of the respective quantities which appear on the lines of discontinuity
of the field, found on the surface of integration S around the considered point P.
3.2. The case of the TM-field

When the propagated field in a given medium is a field of the TM-type 1. e., when
H™ = 0, the electric vector of a field at the P-point can be expressed with the help of the
Larmor-Lorentz principle, in the form

E(P) = — 5@5 dfit - [E™x (Vo x GP)— GE x (Vo x E™)], (3.2.1)

where the index [ correspond to the different components of the vector E(p). The vector
G{® is defined by the relation

® _ Vi 0 —1 exp (—ikoR,)
G {[ko \/ €1 Voo, 9%, +‘u82 \/MSI ] R,

—:: - x )l
+1/_ﬂsis"1-[vgxk9 i
ikg

;2— (exp (—ikoR)—exp (— ikORa)):I} g (3.2.2)
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In the above expression, the second component is zero when / = 3 (it is when T= k)
When we introduce the vector G(E’ in the form (3.2.2) to the expression (3.2.1),
we can express the vector E at the point of observation P with the help of this relation

= e —ikoR, e —ikoR, 2
E(P) = — __\/ ﬁdfn {ETM Y, XP(Rl 0 ) Xp(Rl oR.) = VQE }
€1 g

&

4 _j I'L”O df Vg g™ < 0 exp (= lkORs):l}
4nk0 €&g 6-xl Ra
ue; - o = €Xp (—ikoR,
+83\/—”81~#dfn-{VQ>< [ETMxl _XP( 1KoR )]}
4re, . R,
s

BVE e # dfi - {VQ x [‘L (;ik"R‘) (xR - ETM]}

B Ane, \/a £

i/ #dﬁ.{vgx [ETMVQ x -—(eXP(‘lkoRs) eXP(“kOR))]}
¢’

_471:\/8—1
N
. R GE™ 5 - (kx1
- e gpa frox [ P o iomy-en it | 629
5

Relation (3.2.3) was obtained from (3.21) with the help of common vector identities.
In the case of lack of lines of discontinuity on the integration surface, all integrals in the
expresssion (3.2.3), which have the integrand of the form: 7 - [V x 4], equal zero and the
field at the point of observation P can be expressed by the formula

E(P) = i &3 /z#dﬁ {ETM* Al exp(—-zko E) exp (—ik, E)+ VQETM
471: 81 \ &4 Ra Ra
(3.2.4)

When the lines of discontinuity appear on the integration surface, as in the case of
diffraction on the object with the edge (see the Kirchhoff' theory of diffraction), then the
field at the point. of observation P will be

3 exp (_ lk()Rs) €Xp ('— lkORa) 3
P d ETM = ) . T™
l( ) 471381 \/ &y ﬁ fn { Rs Ra ‘ VEI

i ik
+ l H.“o 0 exp( i 0 s) HTM d
4nk, sso 6>~,
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‘ —ikoR,) — N
es /ue; [ exp (—ikg ) GE™Mx ) - a3

47, R,
(K)

es(e3—¢ exp (—ikoR,) -~ . 7o
_ _3(_3_1_) \/_”'_ § \&o )(le)'(S_E)‘TMk 7B
4ne, & R,

3]

iJn o (o (kxD) . — .
b [T ==l - k R . -1 TM'

ey § 6x3{ 2 [exp (—ikoR,)—exp (—ikoR)] ¢ OE™ - ds

¢
(K)

— L"_ 3€ SEMY {m [exp (—ikORs)—ex;; (—ikyR) ]} - ds
0

4nky \/e; 2
— - - > -—
iJH o (kx1) . _ E™
- — —————[exp (—ikyR,)— —ikyR)]¢ 6 - ds. 3.2.5
4k, \/81 §{ o2 [exp (—ikoR;) —exp (—ikoR)] %3 § ( )

(K)

Where

—>, -, 6’—ETM
SH™, 6E™, 6E™  and 5( )

0x3
are the discontinuities of the respective quantities which appear on the lines of discontinuity
of the field, found on the surface of integration S around the considered point P.

3.3. The case of the arbitrary field

If the arbitrary field propagates in a given uniaxially anisotropic medium, then in
accordance with the results [7], we can always split it into two components, which we have
considered above and find the final result in the form of the sum of the two above results.
Therefore, the result for the /-component of the field E at the point of observation P be can
written in the form

-
- -

[-¢71

E(P) = EXP)+ [Ve x H(P)], (3.3.1)

iweg
where E" and H' are defined by the erpressions (3.1.3) and (3.2.3) and are connected
respectively with one defined type of the incident field by the Larmor-Lorentz principle.

When we pass from the anisotropic medium to the isotropic one, (i.e. when we have
¢ = Ig), formula (3.3.1) is equivalent to (2.4).

Kottler’s form of the Larmor-Lorentz principle is very useful in Kirchhoff’s theory
of diffraction, since it provides a quite simple interpretation of its results according to the
Young-Rubinowicz model of diffraction phenomena. This is mainly due to the fact that
Kottler’s form of the Larmor-Lorentz principle permits one to obtain in a very simple
way the wave potential of Miyamoto and Wolf, which in turn is the basis for this model.

15
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4. Kirchhoﬁ‘ >s theory of diffraction of the electromagnetic field in uniaxial anisotropic
medium

The formulas (3.1.5) and (3.2.5) are the starting points for Kirchhoff’s theory of
diffraction which employes the Larmor-Lorentz: principle for definition of the electro-
magnetic field at a given point P. To find the distrurbance at P we take the integral
over a surface S formed by the opening 4, a portion S, of the non-illuminated side of
the screen, and a portion Qg of -a large sphere of radius R, center at P which, together
with 4 and S;, form a closed surface. .

If the field is radiating at infinity, the integrals over Qg tend to zero as the radius
of the hemisphere tends to infinity and the surface of integration can be replaced throughout
by S;+4.

S comprises a perfectly conducting screen S, and an aperture 4. If the screen is perfectly
conducting, then we have at all its points
1 nxEls,=0 and #nxHs, =0,
where 7 is the unit vector outward normal to a closed surface of integration. It is the first
of Kirchhoff’s assumptions.

The second of Kirchhoff’s assumptions is that at the aperture points. E and H have
the same value as in the incident field

o - =y - - - - S —
2 nxEj,=nxEy and nxHjy=nxH,,

where Eo and I;TO are the vectors of the incident field.

For these assumptions there is a line of discontinuity on the surface of integration,
which is an edge of the screen.

If we take the conditions 1° and 2°, we have on the edge the next discontinuities of the
value for the vectors of the field,

— FIF _ i

L 0H\ 0H, ‘OE\ OE,

5H = Ho, 5E = Eo, 5 - = s 5 — ] =3 .
. ax3 5)63 ax::, ax?’

4.1)

For the uniaxial anisotropic case the conditions of radiation (the Sommerfeld
conditions) have been formulated by Wabia [8]. If we repeat the consideration of Kirchhoff
for this case, we can define the field at the P point by the field at the points of the aperture.

And so we can express /-component of the H for the case of the field of the TE-type,
in the form (3.1.5), where the discontinuities of the values of the field are suitably defined
by (4.1). The integrals on the closed curve (K) are taken now on the edge of the screen.
We may deal in the same way with the case of the field of TM-type. The /-components
of E are defined by (3.2.5), where the discontinuities of the values of the field are given
by (4.1).

The analysis of the results, which are given by formulae (3.1.5) and (3.2.5), show
that the diffraction field, in the case of the incident field of TM-type or TE-type always
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consists of two components. The first component is the field of TM-type (or TE-type),
and second is the field of TE-type (or TM-type). This second kind -of field, absent in the
incident field is connected with the sum curvilinear integrals. We can affirm, in agreement
with, the resulfs of works [8], [9], that in the case of Kirchhoff’s diffraction theory for
electromagnetic waves in an anisotropic medium, the edge generates the new type of the
field.

5. The wave potential of the Miyamoto and Wolf’s type and the Young-Rubinowicz
interpretation of the diffraction at the uniaxiall anisotropic medium

The results of Kirchhoff’s diffraction theory in the umiaxially electric anisotropic
medium may be interpreted in agreement with~the Young-Rubinowicz model of the
diffracted phenomena [10}].

This model gives a posibility of representing the diffraction field as a superposition
of the so-called diffracted waves arising as a result of reflection of the incidence field from
the edge and of so-called geometrical waves.

To give this interpretation of the results of Kirchhoff’s diffraction theory, it suffices
to show the possibility of representing the e?(pression (3.1.3) and (3.2.3) in the form

Hy = f{n- (Vx W),
S
E + {7 - (Vx W), (5.1
S

where W™ and W® are the wave potentials. Once this is done then Young-Rubinowicz’s
interpretation [11] can be emploeyd.

If the incident field is of the TE-type, then we can use the expression (3.1.3). The
integrands in (3.1.3) are already partially in the required form. One exception is the integral

= —ikyR —ikoR
ﬁ; oL {H,TEV exp (—ikoR) _ exp (—ikoR) VH,TE} a (5.2)
R R
But in this case we can use the results of the work [12]. This integral can be represented
in the form
. gt 1
fﬁ; n- {V x ‘/:1.“‘ I:VR X . jexp (- ikOR')V’H,TEdR’]} df. (5.3)
T
N ’ R

.In (5.3) Ris the length of vector P-é, where P is the point of the observation and Q — the
point of the integration on the closed surface S. The integration in (5.3) must be carried
out with respect to R over a halfray beginning at the point Q, the extension of which
passes through P.
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Thus, we can give an explicit form of the wave’s potential for -component of the
H-field in the uniaxial anisotropic medium by the following expressions:

WP, Q) = \/81” {(— X = j exp (= ikoR)V' HTEdR)

\/80 T 0 exp (—ikoR,)

exp (— ikf) (ﬁTE N l—)»_
R kop \/ﬂo axl R,
i . . o (kxD) )
+ L Ex [HTEX vl ( 5 )(exp (= ikoR)—exp (-ikoRa)):l
oHéy 4
i Exl oH™
- e —) [exp (—ikoR)—exp (—ikoR s)] } (5.4)

kope, Q X3

In the case, when the incident field is of the TM-type, the situation is similar to the
above. This is due to the fact that in expression (3.2.3) one of the integrals has the integrand
in the form

83 \/,Zt';— ;[ . EITM:)‘:' V ex_p(_ik()R_e) _ e_Xp ( ”"’ORS) " N VETM} (5'5)
47t81 \/ &y Ra Re
which can be written down by the following expression (see [6]):
5 ‘qzﬂ{ xg ! (VR X — f exp (— ikoR))V E™AR! )} (5.6)
g,

Thus, when the electromagnetic field is of the TM-type, then the explicit expression of
the potential for /-component of the field can be written in the form

WP, 0) = \/8“” {8 \/83 a1 (VR X — f exp(——LkORs)VE,TMdR)
1

(ETM )exp ( lkORs) + __’;_ ﬁ?_ ﬁTM i ?Xp (— lkORa)
81 e koty & 0x, R,

33(31 33) LE™ (l k)eXp(—lko R,
8181 Rs

. ] -
+4n;€;/\/;_:kx{EM V[Q (@ )(exp(-tkoR) exp(~zk0R))]}

£ i a”,"ETM
i o Q_Lf_) [exp (= ikoR,) —exp (~ikoR)]
47'Ck0 \/8

5.7
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The expressions (5.4) and (5.7) for the vectors potentials, when the propagated field
is of the TE-type or TM-type, are related by the subscript / with differential components
of the incident fields H™ or E™.

If the field’s vectors are of interest, then one must use the tensor potentials. The
l-columns of these tensors are the respective.vector-potentials (5.4) for the TM-type
or (5.7)—for the TE-type.
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