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THERMODYNAMIC PROPERTIES OF SIMPLE FLUIDS IN THE
HARD SPHERE REFERENCE SYSTEM*
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The zeroth-order approximation of the repulsive configurational internal energy
Ur"(T , ¢) for different temperatures and densities are obtained by scaling the curve of the
repulsive configurational internal energy Urhs(g) calculated in the hard sphere reference system
with diameter o independent of temperature and density. Similarly the zeroth-order approxi-
mation of the attractive configurational internal energy US(T, o) for different tempei‘atures
and densities are obtained by scaling the curve of the attractive configurational internal
energy U :S(g) calculated in the hard sphere reference system also with diameter ¢. The sum
U® = U%+ U2 which is the total configurational internal energy, the virial, the residual free
energy and the residual entropy are also calculated. The obtained results are compared
with “experimental” data and with the calculations of Verlet and Weis. Some very simple
criteria of choosing the diameter d(7) of a hard sphere for the reference system are also
discussed.

1. Introduction

In recent years a number of statistical-mechanical perturbation theories [1-5] have
been developed to give thermodynamic properties in excellent agreement with computer
simulations at densities and temperatures characteristic of both gases and liquids. The
structure of simple ligiiids in determined mostly by the repulsive part of the potential.
Thus in the perturbation theory we expand the logarithm of the configurational partition
function Qy for the system in a Taylor series about the value In Qy' for some reference
system whose molecules interact according to the repulsive part of the potential. With
this result one can write the Taylor series expression for the Helmholtz free energy. The
configurational internal energy and other properties are calculated by thermodynamic

relations.
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Malesinski [6] has suggested that the configurational internal energy U for the Lennard-
Jones fluid may be divided into the repulsive configurational internal energy U, and the
attractive configurational internal energy U, defined by
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and ¢...) denotes the average value.

The isotherms of U, and U, are monotonic functions of density. The isotherms
of U = U,+U, and other thermodynamic properties which are related to U, and U,
are not necessarily monotonic functions of density. The monotonic properties of U, and U,
make possible the observation of the creation of minima on curves U and other thermo-
dynamic properties.

In previous papers we have investigated U,, U, and U in the hard sphere reference
system with diameter ¢ independent of temperature and density [7-9] and in the soft
sphere reference system [10]. In the first reference system poor results are obtained.- The
second reference system reproduces U, and U, quite well at high teperatures. Now wepresent
the calculations of U, and U, for the Lennard-Jones (12—6) potential in the hard sphere
reference system with diameter d(T). Other thermodynamic properties (virial, residual
free energy, residual entropy) related to U, and U, are also presented.

2. Scaling properties of the configurational internal energy in the hard sphere reference
system with diameter d(T)

From Eq. (1) and (2) one can sce that to calculate U, and U, we should know the
radial distribution function g(r; T, 0). Because we do not know g(r; T, g), we use different
approximate forms of this function. One of the possible approximations is the assumption

& T, 0 ~ go(r: T, 0), (5)

where go(r; T, o) is the radial distribution function of hard spheres with diameter d(T).



Now we consider the approximation of U, and U, defined by
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In previous papers [7, 8] we have discussed UM and U® defined by
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with gn(r/o; 003) adopted from the Percus-Yevick approximation [11, 12]. Barker and
Henderson [13} have calculated by the Monte Carlo method the. gy (+/o; 0o®) for
1 < rlo < 2.3. So we calculated UM(0) and U™(p) for density 0.2—0.9 with g,.(*/o; 053)
from Monte Carlo data for above the range of r/o (the computed values of g,.(v/o; 0o®)
was multiplied by 108/107) and with g, (*/o; 006°) from the Percus~Yevick approximation
for larger r/o. For r/o > 4 or rlo > 6 we put g (r/o; 00®) = 1. Thus the calculated
values of the U™(p) and UP(p) are presented in the following Table.

TABLE 1

The values of U and U®® calculated for the Lennard-Jones (12-6) potential in the hard sphere refer-
ence system of diameter o

po® U ?S U 25

0.1 0.3104 —0.8957
0.2 0.6940 —1.9241
0.3 1.1577 —3.0780
0.4 1.7340 | —4.3852
0.5 2.4328 —5.8454
0.6 3.2868 -~7.4755
0.7 4.3135 —9.2688
0.8 5.5770 —11.2657
0.9 7.1090 | —13.4576

Now we show that U(T, ¢) and U(T, ) may be appropriately expressed by U™(¢)
and UP(o) i.e. the curves UX(T, ) may be obtained by scaling the curve U™(g) and the
curves U2(T, o) may be obtained by scaling the curve U(p).



After introducing the reduced distance x = r/d from Eq. (6) we obtain
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where d* = dfo and T* = kTJe.
For p,d® = p,0° there is equality

2nNeg dc | x "go(x; 01d*)x*dx = 2nNeg,0°c | x™ g (x5 0,0°)x°dx = Ul¥(0,0°).
1 1

1y
Thus
UAT*, 04d®) = d* " "U™(p,6°) for g,d* = p,0°. (12)
In a similar way we obtain
UNAT*, 0 d®) = d* Ui (p,0°) for 9,d° = 0,0° (13)

3. The configurational internal energy in the hard sphere reference system with diameter d(T)
chosen in a simple way

Division of intermolecular potential into un unperturbed part @o(r) defined by

+&  for r < rym
%(r):{(p(r) ¢ forr<m (14)

for r = oy
and a periurbing part ¢,(¥) defined by

—& for r < rym

Pi(r) = { (15)

(]9(7') for r ‘} Fmin

seems more appropriate than any other division. From this division one would expect
.that at low temperatures the nearest distance between molecules would be a little smaller
than r,,;, and larger than o. With an increase in temperature the distance of closest approach
would become smaller and for a sufficiently high temperature may be smaller than o.
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Fig. 1. The isotherms 7™ = 0.75 of the repulsive configurational internal energy Uy, of the attractive config-

urational internal energy U,, of the total configurational internal energy U for the Lennard-Jones (12-6)

potential; @ @ @ calculated data in the hard sphere reference system of diameter d(7) determined by Eq.
(18); x x x the Verlet and Weis results; + + 4+ “‘experimental” data

The Barker and Henderson choice of d(T') is obtained from the division of the intermolecular
potential at the point r = ¢ for which ¢(o) = 0 and the diameter d(T) is always smaller
than ¢. Analysing our results for U2 and U? one can see that the diameter d(T, ¢) defined
by Verlet and Weis rises with temperature too slowly. It seems that a better value of diam-
eter d would be between d(T) defined by Barker and Henderson and d(T, o) defined
by Verlet and Weis.

From the Maxwell distribution of velocities we may see that some particles have
smaller nearest distances than others. One may raise a question, which nearest distance
represents the N particle system interacting by a ¢(r) potential in the best way. Andrews [14]
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Fig. 2. The isotherms 7% = 1.15 of the repulsive configurational internal energy Uy, of the attractive config-

urational internal energy U,, of the total configurational internal energy U for the Lennard-Jones (12-6)

potential; @ @ @ calculated data in the hard sphere reference system of diameter d(T) determined by Eq. (18);
x x x the Verlet and Weis results; + -+ -+ “‘experimental” data

determined the diameter d(T) by the equation
@(d) = 3kT (16)

and obtained good agreement with “experimental” data.

Eq. (12) and (13) give us a simple method of examining the criteria. of choosing the
diameter d. Our calculations of U?, U? and U° = U + U, indicate that the diameter d(T)
determined by Eq. (16) is too small. One may obtain better results if d(T) is determined
by equation

po(d) = 3kT. ‘ amn
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Fig. 3. The isotherms T# = 1.35 of the repulsive configurational internal energy U;, of the attractive con-

figurational internal energy U,, of the total configurational internal energy U for the Lennard-Jones (12-6)

potential; ® ® @ calculated data in the hard sphere reference system of diameter d(T') determined by Eq.(18);
% x x the Verlet and Weis results; + + 4+ “experimental” data

The best agreement between our U, Uy, U° and “experimental” U, U,, U is obtained
if we determine the d(T) by the criterion

po(d) = kT. (18)

The results of our calculations of U2, UY and U° from Eq. (12) and (13) with d(T) deter-
mined by Eq. (18) are presented in Fig. 1—4. At T% = 0.75 our results for U° and Verlet
and Weis results for U are almost on the same curve. Our results for U° and the Verlet and
Weis [15] results for U coincide up to a rather high density which slowly decreases
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Fig. 4. The isotherms T* = 2.74 of the repulsive configurational internal energy U,, of the attractive

configurational internal energy U,, of the total configurational internal energy U for the Lennard—Jones

(12-6) potential; ® @ & calculated data in the hard sphere reference system of diameter d(T) determined
by Eq. (18); x x x the Verlet and Weis results; + + + “experimental” data

with an increase in temperature. For the larger densities the results of Verlet and Weis are
in better agreement with ‘“‘experimental” data.

Now we will try to discuss the fact that the “experimental” data are well reproduced
by choosing d(T) from Eq. (18). From the Maxwell distribution of velocities we know
that the largest number of particles have velocity ¥ about (2kT/m)'/2, the velocity at which
the distribution has the maximum. This velocity then corresponds to the classical distance
of closest approach for particles with relative kinetic energy equal to k7.



11

4. The virial, the residual free energy and the residual entropy

The virial is defined by
. A egly
W(r) = —1% ri'a—_, D(r™). (19)
T

For the Lennard-Jones potential it may be divided (as the configurational internal energy
was) into a repulsive virial and an attractive virial i.e.

W) = W () + WY, (20)

/Wﬁr(;:N) = %l Z (pr(rij)ﬂ (21)

i<j

”//a(;:N) :le Z (pa(rij)’ (22)

i<j

where

Thus the average values of the virial is

. o om n
HE) =W =2Uct 5 U, (23)

Substituting Eq. (12) and (13) into Eq. (23) we obtain
124 €9 ©
WEE i 2 neod®[md* ™™ | xT"gu(x; od)xPdx—nd* 7" § xT"gy(x; ed>)x*dx]. (24)
2 1 i

The results of our calculations of W for the Lennard-Jones (12—6) potential from Eq. (24)
with d(T') determined by Eq. (18) are presented in Fig. 5. In this figure we have also plotted
“experimental” curves. One can see that our curves have the right depth of minima and
are in good agreement with “‘experimental” curves. Only for large densities do our results
appreciably deviate from “experimental” data. Comparing the curves of the configurational
internal energy and the virial we see that the large discrepancies at low temperatures for U,
and U, become smaller for U and W because there is some cancelation in the deviations
of U, and U,. For curves of W the cancelation is greater than for curves of U.
The residual free energy is defined by
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Fig. 5. The isotherms of the virial for the Lennard-Jones (12-6) potential; ——— calculated data; — — — “ex-
perimental” data

From Eq. (12) and (13) we have

0143 o

Fres 2 —-m
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with 0,d*® = p,0°. For od® — 0, U, - 0 and U, — 0 because the integrals are multiplied
by density. The integrals in U, and U,. contained also in f,.; go to values dependent on
temperature. For od® —» 0 and for x =1 the function g (x; 0d®) — 1 and for x <1

Tres

20

5

calculated

Fig. 6. The isotherms of the residual free energy for the Lennard-Jones (12-6) potential;
data; —~~ “experimental” data

is zero but do not go to e~#? as in real systems. In Fig. 6 we plotted the isotherms of f,, for
the Lennard-Jones (12—6) potential calculated by Eq. (25) choosing d(T) by Eq. (18).

The isotherms of f,, are lower than the appropriate “experimental” isotherms but are
in good agreement with them.
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Fig. 7. The isotherms of the residual entropy for the Lennard-Jones (12-6) potential; calculated
data; ——— “experimental” data
The residual entropy may be calculated by
TSres = U—Fres' (27)

Thus one may obtain
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The isotherms of s, calculated by Eq. (28) for the Lennard-Jones (12—6) potential
with d(T) determined by Eq. (18) are plotted in Fig. 7. The isotherms of s,., are always
above the appropriate “‘experimental” isotherms. At low temperatures and low densities
(05,e5/00)r > 0, it is not in agreement with ‘“‘experimental” data. At intermediate and
large densities we obtain the right sign of (9s,./d¢)r. The calculated curves cross them-
selves, whereas the “experimental” curves do not cross themselves. At large densities
calculated curves of s, are closer to the “experimental” curves than at low densities.

5. Discussion

In doctorial dissertation was discussed U,, U, and other thermodynamic properties
calculated on the base of Eq. (12) and (13) choosing the parameter d(7) by

aT) = | (1=exp [~ Py} 29)
where @(6) = 0, and choosing the parameter d(T, o) by
AT, 0) = dT) [1+ 1((9)) & )] (30)
where
dy(T) = j(l—e"ﬁ”"’)dr, (31)

) == (= —1 eI x| (- —1 = e*/‘%“)dr. (32)
ds dr
By r J

6, and o, are expressed by ¥,.(1, o) and its derivative. In the Percus—Yevick approximation
we have

oy _ =% nl+n) (33)
260 (43w A-n)’

where 5 = % pd®. We applied this relation to determine the diameter d(T, o).

In the first case i.e. for d(T') chosen by Eq. (29) we observe that the deviations of our
curves U? and U? from appropriate “experimental’” curves become smaller up to T* = 2.74
and become larger above this temperature. The curves U° = U2 + UL at low temperatures
go above the curves of “experimental” U and with an increase in temperature the deviations
become smaller. At 7% = 2.74 and T* = 5 at low densities they are almost the same
as the “‘experimental” one, but at large densities they go below the “experimental” curve
and deviations are large. The curves of W at low temperature have less deep and shifted
to lower densities minima than the appropriate “‘experimental’” one. The curves of f,., at
low temperatures go above the appropriate “experimental” curves.
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In the second case i.e. for d(T, p) chosen by Eq. (30) we observe that deviations of
the curves U2 and U? from appropriate “experimental” curves are larger than in the first
case. In this approximation the values of U; are always smaller than the appropriate
“experimental” values of U, and values of U? are always higher than the appropriate
“experimental” values of U,. The curves of U° cross the “experimental” curves of U.
The curves of W have deepcr minima than the “experimental” one. The curves of fi
always go below the appropriate “experimental” curves.

In our calculations of thermodynamic properties below T* = 1.35 there are unstable
and metastable states of the system. At 7% = 1.15 and go® from 0.1 until 0.6 the system
is in one of these states and at T* = 0.75 in the whole presented range of densities the
system is in one of these states also.

The author would like to thank Professor J. Stecki for advice and helpful discussions,
and Doc. dr hab. J. S. Brzosko and Doc. dr E. Trembaczowski for interest in this work.
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