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The collinear two-sublattice antiferromagnet with anisotropic (easy axis) Heisenberg
Hamiltonian is investigated for arbitrary spin by means of Green functions in RPA for
a wide range of the external magnetic field and temperature. Approximate (within RPA)
expressions for the free energy in all phases and for magnetization in the flop phase are
derived. The conditions determining the inter-phase boundaries are established. Numerical
calculations for the MnF, case are carried out giving the full 7-H phase diagram from
the vanishing of magnetic excitations. Moreover, the following curves are computed : magnet-
ization vs temperature and magnetization vs magnetic field, as well as parallel differential
susceptibility vs temperature. Good agreement with the experimental data is achieved.

1. Introduction

The properties of antiferromagnets in a wide range of magnetic ficld and temperature
have commanded the attention of theoreticians for many decades. Let us mention some of
the most important steps. The effective field theories have been reviewed exhaustively by
Smart [1]. The spin wave treatment was applied by Feder and Pytte [2] to the uniaxial
lattice with exchange (two-ion) and one-ion anisotropy. The Green function method in
RPA and CD approximations was first used by Anderson and Callen [3] for the case of
single-ion anisotropy (but the intermediate phase i. e. the oblique or “flop” phase was not
considered in their paper because of the considerable difficulties of decoupling in this
region). The “flop” phase has been analyzed using the Green function method by Fu-Cho
Pu [4] for the special case of spin 1/2 and isotropic lattice only. Some other less sophisti-
cated method have been used too [5-8]. A review of articles devoted to the magnetic phase
diagrams has been given by Shapira and Foner [9].
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In the present work, the Heisenberg model of collinear two-sublattice antiferromagnet
with uniaxial anisotropy of exchange interactions is considered. We concentrate our atten-
tion on the calculation of the magnetization curves and phase diagram in the plane of
T-H parameters. We use the Green function method and apply Tyablikov decoupling for
the case of arbitrary spin. An essential feature of this approximaiton is that the spin wave
spectrum is temperature-dependent only through the averaged magnetization <5, ; hence,
all calculations have to start from working out this dependence. Since (8,> is obtained in
implicit form, numerical calculations have to be performed. In order to fix the material
parameters before proceeding to the calculation, we have chosen the constants relevant
to MnF, — one of the best examined antiferromagnets.

2. The Hamiltonian

We shall consider the following Hamiltonian with interactions restricted to nearest

neighbours only
A=1J gﬂ S@S®B)+K Zﬂ S0)S(B)—pH Y, S(e)~puH ; S(B), €Y
o a< @«

where S is the magnetic moment per ion, H — magnetic field in the easy axis direction,
J — exchange integral, and K — its anisotropic part, whereas o and f denote sites in the
first and second sublattice, respectively. We consider the tetragonal lattice of magnetic
ions taking into account only intersublattice interactions. Due to the molecular field calcula-
tions of Turov and Irkhin [10], we know the relevant (7, H) quadrant to consist of three
regions. For a magnetic field less than a certain critical value H. (T, we have the antifer-
romagnetic phase with antiparallel arrangement of spins. In the field H,, spin flopping
takes place; it is a discontinuous transition to the oblique or “flop”” phase, in which the
spins of the first and second sublattice lie in the same plane parallel to z-direction and
form the angles © and —0, respectively, with the z-axis. At some field H,(T) (higher than
H,(T) for all temperatures below the triple point, in which H, and H, coincide) another
phase transition occurs, namely a continuous transition to the paramagnetic phase.

To obtain the spin flop transition by the Green function method, one must take into
account the oblique phase. To this aim we introduce (following Feder and Pytte 2D
new, local axes of quantization, distinct for both adjacent phases.

2.1. Antiferromagnetic phase

In the expression (1), we perform the substitution

8.8 - S8, 5B — -8B, 8.8~ —5.B), V)

and, on going over to operators 8+, 8-, §,, we obtain

H =173 [ST@S*B®+5 @57 B]

a<p

~(J+K) Zﬁ S.()S.(B)—uH Y, S, (0)+pH ; S.(B). 3)
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2.2. Flop phase

In the expression (1), we carry out the substitution
$.0) - 8.,
$,(@) - 5,() cos @ —§,(a) sin O,
$,(0) = §,() sin @+ 8,() cos @,
348 - 8.P),
3,(8) - §,(B) cos ©+S.(8) sin @,
3.(8) > —S$,(B) sin ©+5,(B) cos O, @)

and obtain

H, = L u’n, Zﬁ 5 @8 (B)+S8 ()37 (B)]

+3 1, Zﬁ [5* @8~ B+ @S5 (B)]

A oA 1 - A
+15 Z 8.08.(8)~ . 1Hu Z [3*()=357]

a<fB

1 N\ Ve ol N |~ A
o LJ[S (BY=S7(B)]—pHv S(0)—uHv S5.(B), &)
1
B 4 B
where the following symbols have been used
"y =2J+K, 1, = QRJ+K)cos?0—K, n;=2J+K)cos*’0O—J,
u=sn®, v=cosO.

2.3. Paramagnetic phase

For this phase, no new axes of quantization are needed.

3. The magnetization

3.1. Antiferromagnetic phase

The magnetization of the sublattices is calculated by having recourse to the method
introduced by Callen [11]. We define the double-time, retarded Green functions for the
o — sublattice as

Gy, = —i0() {[87(a 1), exp (aS (NS @)D, ©)
Gra = —i0(f) {[87 (B, 1), exp (a8.())8* ()], 0
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where  denotes time, { ) stands for the canonical average with respect to the density
matrix, and « is a parameter. Below, we apply for brevity the notation

G = (87 (@ O, G = <878 01 ®

On deriving the equations of motion for the functions G, and G,,, we go over to their
Fourier components and apply Tyablikov decoupling. The spectral theorem for Green
functions [12] allows us to obtain the following expression for the correlation function

Cexp (aS (NS (@S ()

" " R 1
= {[87 (@), exp (aS())S"(@]) N Z @, (k), 9
k
where
(k) = —1~[ SOl ANERRY ] (10)
' Asabexp (P )—1  exp (Bwy)—1
Wy,24 = 3 [zw“lzai)ﬁa]» (11

Mo = 12480)) —pH, Ay = 142<S(B))+pH,
hsa = [M322 (8@ +<8P)* ~ 15y () <8,@) <S.BNT,
ne = J+K, 55 =4, yk) = ;exp (ik - R,p). (12)
In (12), z denotes the number of nearest neighbours, N — the number of sites of the sublat-
tice, Y — the sum over the first Brillouin zone of the magnetic lattice. By means of the
follov{f{ing auxiliary function
fa) = {exp (@8,(x)), (13)

and its derivatives, equation (9) can be written (see Callen [11]) in a form more convenient
for further calculations. Callen’s method reduces the problem to solving equation (9) with
respect to f(a).

We then easily find the equation for magnetization

. of (S—,) (1+2,)*° ' +(S+1+0,)0.° "
(S0 = oa » g - ‘ (1+0 )zs+1_q?5+1_ —pa) (14)
where
&, = ! & (k 15
a N a( ) ( )
3

The expression for the S-sublattice is similiar and differs from (14) only by the replacement
of ¢8,(z)> by <(8,(B)> and by a change in sign of the magnetic field.



299
3.2 Flop phase
For the flop phase, we define the following Green functions
Gy = &8 (o, 1), Gyy = <87(B, ),
Gsp = (87D Gap = (8" (@ 1)l. (16)

In order to solve the equations of motion we use, apart of Tyablikov decoupling, the
following approximations

(8. =0, <8.(B)| =0. (17)

Tn this way we eliminate those functions for which RPA cannot be applied. Next, with the
aid of G;;, we obtain the following equation, analogous to (9)

Cexp (a8)8787) = <[87, exp (a8,)8" 1>,

—(exp (—a)—1) (exp (a8,)5* 8@, , (18)
where
Py = NZ [ZT”” cth (3 o, ;) + “Wdh (3 Posp) | —%, (19)
%
0 12[* th (3 ooy )~ —2L cth (3 § )] (20
== NN, -C Wy )~ ——C w
2f N 4 1f 2 1f. CO v 2 2f
k
@y 27 = [(ﬂ-u 'T'/IZf)Z_Agf]l/za (21

Ay = (SA)dzns—pHo, Loy = 1 {(S()>n.y(k),
Ay = % uln (S ()>y(k).

1t is not possible to write the last average in Eq. (18) in terms of the function (13), as in the
antiferromagnetic case. Therefore, we propose here another way of solving the problem;
namely, with the aid of the functioh G;,, we obtain

Py
L+[exp (—a) =11 (@1,+D)

exp (aS,)S*8*y = <[87, exp (aS)HS™D (22)

We can now eliminate the term {exp (aS,) S5+8+5 from Egs. (18) and (22); this leads to the

following differential equation

— [(@1f+1) "‘sz]e—a (@ f ¢2f_)e
[(dsu"l‘l)z sz]e—a‘l'(‘p ir— ‘152f)e —2d7 f+¢1f‘¢2f)

~S(S+1)f(a) = 0. ) (23)

J@—=f'@ -
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Using the boundary conditions [11], we thus find the solution of Eg. (23) and obtain
expressions for the magnetization, for each value of the spin separately’.
The resulting implicit equation has the following form

(§-9,,) (1+¢u)2s+1+(s+1+¢1f)¢%§+1+xs 24
(S;p = = —— 28+1_ g285+1 B (24)
A+Pyy) o1 +Es

where g and &g are given in Table I for spin § = 1/2... 5/2. Above, we have put

(80> = (5P = {8, (25)
TABLE 1

Formulae of the symbols ys, és

S xS &s

3 0 - 0

1 0 | D3y

3 103, 203,29 s+1)

2 703;2P +1) B+ 03 (1007 14100, s+ 5D

5 Bpi 4+ D3 (L5°P1, 303 2Py 5+ 1)+ B3 (2003 5

+%)@1f+21i61— | +30@§f+§;7@1f'+48—7

Note that y1/, and £/, are equal to zero because <exp (aS;)S*S+> of Eq. (22) vanishes in this case
as follows from the operator identity $+8* = 0 for § = 1/2.

in conformity with the symmetry of the Hamiltonian.

At angle © = 0, Eq. (24) obviously reduces to that obtained within RPA for the
paramagnetic phase, implying @, = 0. The condition for the angle & can be obtained by
minimalization of the free energy (for a discussion, see Section 6).

1 Our solution is found in the form of a series:
xX

f@ =Y bya.
v=0

The coefficients are given by a set of simultaneous equations as
bv = bv(bVoly bv—2a bo)-

Therefore, the expansion has to be carried out step by step. Moreover, the boundary condition [11}

S ~
H ©Sz—p) =0
p=-5
must be considered for each value of the spin separately. This complicates the calculations so much that

we give here the final result only.
A}
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3.3. Paramagnetic phase

The magnetization in the paramagnetic region can be expressed by equation (24)
with @ = 0. We obtain

1 1
: 0, Sody=— > —— ,
CHL s 2N2exp(ﬁwp)~1 (26)
k

where

wp = (J+K)z(8,> = I8 >p(k) — pH. @7

4. The free energy

With the aim of calculating the free energy, it is convenient to introduce a formal
parameter g into the Hamiltonian, writing

H = Ho+gH,, o2y

where H, includes only the terms for which the sum of states can be computed explicitly
(terms of the Zeeman type). In this case, the free energy per ion can be expressed as follows:

1
1 2 a
F=Fy+F, = — E In Tr exp (—BHy) + j(Hng. (29)
0

The average (H,) is computed applying the Green function method to the Hamiltonian
(28) including the parameter g. Following Waks et al. [13], we write fully the Ising type
terms occuring in the Hamiltonian with the aim to separate the terms of Zeeman type from
those describing the fluctuations

Y 5,@8.08) = —Nz(8. () <S,,(/3)>+<S,(a)>§éz(ﬁ)

a<p
+<5.(8) Z‘ 8.0+ Z,, [8.0) — <S.@>] [8:.(B) = <S.B)]. (30)

The omission of fluctuations of the spin z-components is consistent with RPA and allows
us to include the Ising type terms into the F, part of the free energy. The correlation functions
for nearest neighbours used for computing the free énergy are listed in Table II. The
expressions for the free energy are given below.
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TABLE 11

List of the correlation functions used to compute'the free energy («, f denote nearest neighbours)

Antiferromagnetic phase

()%~ ~_1_ - .1%___1___ Ha i R,
OFP G N Z[l—eXp ("'ﬂwla) 1—exp (_ﬂwza)] Aza ¢ ’
k
ta = ~248(@)> BB Jy(k),

SHDSHP o = — <S(@8(B) -0

Flop phase

AT, S:> A ,
Erdpy = - 2 Z[ L cth (3 n] k- Rup,

N wl_]‘
k

(S-@)8-(B)y = SH@)E B,

A n S, Z Aag—2 .
{SH)S- (B = — <N>‘ I:l—f—“—'c'th (3fw, ,)] eik - Rup

Wy

k
S-@8H(B)y = SHX)SB).

Paramagnetic phase

. B2 z : . '
o + = — s
S @SHE = N 1—exp (—fpwp) i

k
S @D BYo = —E @S B)>-q

4.1. Antiferromagnetic phase

L[, sinh (BhuS+)  sinh LS+ L e
Fou = 2,;[‘“ a1 D) i TP ]+2zn4<sz(oc>> D
Fiu= s Z [16 (1~ exp (= foo,)-+1n (1 —exp (Beoy,)) —In (L —exp (A1)
k

1
—In (1 —exp (B2,,))]+ ZN E (Aot 220+ A3,)- (32)
%
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4.2. Flop phase

1 sinh (B(5+3)

3 1 S \2
ﬁ g sinh (ﬁ'q“lf _%_) 2 n3Z<Sz> > (33)

FOf = ."'

Fiy= 273]‘[3 Z [In (1 —exp (—fo; ;) +In (1 —exp (—Bw2p)

k

, 1
—2In(1—exp (—PAsp)]+ ZN—Z(wlf+w2f—211f). (34)

4.3. Paramagnetic phase

1 sinh (BA,(S+%)
n _—

For= = pin = G 328>, (35)
Fy = 2N—1ﬁ— Z [1n (1~ exp (= fe,)) ~ln (1 —exp (= fA,)], (36)
k

where
Ay = —uH+n,2¢8,>.

It is necessary to point out that, when computing the free energy form equation (29), we
have neglected the implicit dependence of the averaged magnetization on the parameter g.
Therefore, this can be seen as a first step of iteration. But even in this case the expressions
for the averaged hamiltonian are rather complicated.

5. The antiferromagnetic — flop phase boundary

The boundaries of existence separating the antiferromagnetic and flop phases in the
T-H plane can be obtained from the vanishing of magnetic excitation energy i. e. from
the poles of the Green functions. In the antiferromagnetic phase, the energy minimum
of the lower spin wave branch (w,, from Eq. (10) occurs for magnons with & = [0, 0, O].
Thus the condition

4k = [0,0,0]) = 0 37

determines the temperature dependence of the critical magrnetic field. For T = 0, this
condition yiclds the well known formula

pHy, = 280 (KQI+K)Y2 (38)
Starting from the flop phase, or using the equilibrium condition

Fof = Foa, (39)



304

we obtain te same expression (38). This means that these three conditions give the same
value for the critical field when zero point spin deviations are ignored. The magnitude of
the latter can easily be estimated from the low temperature expansion of magnetization.
We obtain for the b. c. ¢ lattice the following expansion of equation (38).

= H° 15 15 40
H,, = H; 1+2S 55°7)> (40

Z 1+K
[1+K)* - (k)/zz]” 2+
3/2

or = = = [I+BR1+1 B)-1 R+ K]

where

2/3

1 g2 2
x( ) QR+ —

1 ° 5 5
— - (1+BK(1+1 B) (ﬁ H‘l’> T+ -

uHS = zS[KQJ+K)]'?, K = K/J.
From the flop-phase side we obtain

1
H,,=H(1+ =96 5r ), 41
1f 1<+25 o+25, ) 41

where
vt i Yo
° N £ (A —y*(k)[z5)*”

Op = 8 - 21_'262
T““_;Z<;B—JZ§) @D+ ...

These equations are identical with those obtained by Feder and Pytte [2] applying the spin
wave method except for the term T3/2, which is absent in the spin wave treatment. From
expressions (40) and (41) hysteresis is seen to vanish with increasing temperature if
KY2 <1 only, as follows from the spurious term T%2.

In the example we consider below, K = 0.01 and hysteresis for zero temperature is
of the order of 2%;. Consequently, the condition (38) determines with good accuracy the
phase boundary between the antiferromagnetic and the flop phase.
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6. Boundary between the paramagnetic and two other phas;zs

In order to determine the boundary of existence of the paramagnetic phase, we use
the method described in Section 5 (at decreasing magnetic field). The condition now reads

o]

SgeZl ”]—0 4
a9£,'z"> - ()

uH, = z(8,> 2J+K). (43)

and yields

When starting from the flop phase, one needs an additional equation for the angle &@. We
adopt here the molecular field condition

: ili"_ =0, (44)
e
which gives
uH

cos @ = — .
z(2J +K) {S,>

4%

We believe this expression to be correct in RPA also because, when using it, the modes of
the flop phase soften along the same H(T)-curve as given by equation (43), as expected for
a continuous phase transition. "

On the boundary separating the antiferro- and paramagnetic phases, some difficulties
occur because the condition (43) does not coincide with the behaviour of the magnetiza-
tion M(H, T). Namely, considering the equations for magnetization for low magnetic
fields, we obtain for the boundary between these two phases

uH = z(8,> (2J +2K), (46)
what yields for b. c. c. lattice the Néel temperature
kgTy = 3 S(S+DzJI™ ' [(1+K)" 1], (47)
whereas equation (43) gives the lower value
ksTy = 4 S(S+1)zI"'(1), (48)

where 7 is a Watson integral {16]. The antiferromagnetic modes soften between the curves
(43) and (46). These differences arise because in RPA the anisotropy K is independent of
the wave vector (meaning that it is treated as in MFA, contrary to the exchange integral).
In our numerical calculations, we use the condition (43).

7. Application to MnF,

Manganese fluoride has a rutile type structure with two Mn*+ ions (S = 5/2) in the
unit cell. Each spin in the central site is ferromagnetically coupled along the tetragonal
axis with its two nearest neighbours lying at the centres of adjacent cells and strongly
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coupled by antiferromagnetic interactions with its eight next nearest neighbours, localized
in the corners of the same unit cell. Following Smart [1], we neglect the n. n. coupling
because it is thirty times weaker than the n. n. n. coupling. To carry out the numerical
calculations, well specified values of the exchange integral I and anisotropy K are obviously
needed. We evaluate them from Eq. (48) for Ty and Eq. (38) for the threshold field
H, (T = 0) adopting here the following experimental data: H, ='96kOe [l14] and
Ty = 67.34 K [9], which yield I/kz = 2.01 K and K/kp = 0.02 K. For these values, we

|
1200

T

o

it

20 W0 TIK 6734

Fig. 1. Phase boundaries in the T*-H plane. Circles denote experimental values of Shapira and Foner [9]

computed the phase diagram (Fig. 1). To facilitate comparison with experiment, we show
in the same diagram the results of measurements by Shapira and-Foner [9]. Good agreement
with our theoretical results is found except in the vicinity of the triple point. This discrepancy
is caused by our use of the same condition (43) for both boundaries, corresponding to
para-flop and para-antiferromagnetic transitions.

The hysteresis of the first-order (flop to antiferro) phase transition is, in fact, negligibly
small. We obtain for zero temperature

H,, = 0.978H,, (49)
H,, = 0.976H,, (50)

and this difference vanishes with increasing temperature as shown in Section 5.
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Before computing the phase diagram, it was necessary to obtain the magnetization vs
temperature and magnetization vs magnetic field curves. Some of these curves are shown
in Figs 2 and 3. Fig. 2 shows the temperature dependence of sublattice magnetization for
H = 50 kOe in the phase diagram as obtained by numerical solution of the equations of
Section 3.1 and 3.3. We.note that sublattice magnetization does not attain its saturation

481 T__\

P

Kl

487

Fig. 2. Sublattice magnteization vs temperature for magnetic field H = 50 kOe parallel to the antiferro-
magnetic direction

value because of the zero-point spin deviation (independent of the magnetic field). The
Néel temperature predicted by formula (14) is 72 K (which differs by 7% from that obtained
from the phase diagram). The magnetization curve taken along the line H = 1500 kOe
(paramagnetic region) is shown in Figure 3. The long paramagnetic tail is caused by the
strong magnetic field. Figure 4 shows the computed magnetic field dependence of macro-
scopic magnetization M at various temperatures. In the antiferromagnetic phase we have

¢

M =} (80> —<S.0)). (51)

Comparison with measurements by Gunzbourg and Krebs [15] shows substantial differences
We presume that their experimental magnetization curves lie too high, with a slope
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attaining its maximal value for T = 60 K, and it is not clear what will happen at higher
temperatures. In the flop phase. )

M = (8.) cos @ (note Eq. (25)), (52)

A
5
(Se)
HMe

3 L

7 L

Ly e , /A
1000 2000

Fig. 3. Magnetization vs temperature for magnetic field H = 1400 kOe parallel to antiferromagnetic
direction. (Paramagnetic phase)

where cos @ is given by Eq. (45). Thus,

uH

= e (53)

and we conclude that the macroscopic magnetization is independent of temperature, as
has been confirmed experimentally [15].

Knowledge of the magnetization curves permits the numerical computation of the
parallel differential susceptibility. Its temperature dependence for various fields is shown
in Fig. 5 as obtained by numerical differentiation of the magnetization curves (except for
the flop phase, for which the result was obtained directly from Eq. (53)). Good agreement
with the measurements for the antiferromagnetic phase (H = 0) is obvious. For high
magnetic fields, the susceptibility has a strongly broadened maximum. Similar results
are obtained for the specific heat vs temperature suggesting that the paramagnetic region
actually decays into two subregions separated by a broadened transition line.
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Fig. 4. Magnetization vs magnetic field for various temperatures. Points ® O x 4 denotes experimental
values from measurements by Gunzbourg and Krebs [15]

|

Xt R

0 H- 625 kDe i 2

H=1500k0e

30 ~ 100 50 T/L°K] 200
Fig. 5. Parallel susceptibility vs temperature for various magnetic field. Circles denote experimental values
from the work of Bizette and Tsai [17]
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8. Conclusions

To investigate theoretically the behaviour of a typical collinear antiferromagnet in the
whole range of thermodynamic variables H and 7, one must use a method ensuring good
approximation for all teperatures. The Green functions in the Random Phase Approxima-
tion, when used here, turned out to be an appropriate tool for our purpose. To obtain
the full phase diagram, we took into consideration the flop phase, disregarded by some
authors (Eq. [3]) because of the great difficulties of decoupling in this region. For this
reason some further approximations are used in this paper (see Sec. 3.2) in order to derive
the magnetization formula.

Contrary to Ref. [4], our approach is valid for arbitrary spin and takes into account
magnetic anisotropy (of the two-ion type). The phase diagram thus obtained (Fig. 1)
shows excellent agreement with experiment on the antiferro-flop transition line. On this
line (which is of first order in Ehrenfest classification) only a negligibly small hysteresis
caused by the zero point spin deviation is obtained as in spin wave theory [2]. Nevertheless
it can be easily shown that taking into account next nearest neighbours as well as the one-ion
anisotropy allows us to obtain greater hysteresis. On the second-order transition line some
difficulties arise:

— the Néel temperature cannot be determined unambiguously, as was first shown by
Anderson and Callen [3], and

— 1o discontinuity in the slope of the boundary line in the triple point was obtained due
to our use of the same condition for the para-flop and para-antiferromagnetic transition
line. Obviously, the high field regions of our phase diagram are not accessible to experiment
in the case of MnF, making our comparison less complete.

The magnetization curves obtained here are of the typical shape. Especially in flop
phase we get a very simple expression (53) analogous to that resulting from MFA. This
simplicity leads to a constant susceptibility in the whole flop phase (Fig. 5) strictly equal
to the maximum of the susceptibility curve for H = 0. This last curve exhibits excellent
agreement with experiment especially in the low temperature region.

It is worth noting that we have achieved satisfactory agreement with the experimental
results notwithstanding the fact that we replaced here the one-ion anisotropy (which can
play an important role in the case of MnF,) by anisotropy of the Heisenberg Hamiltonian
because of its mathematical simplicity.

The authors wish to thank Dr. R. Micnas for his helpful discussions.
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