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BAND MODEL APPROACH TO THE THEORY OF DOMAIN
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Within the framework of the band model of ferromagnetism a uniform and consistent
approach to the problem of domain structure is presented. The Hamiltonian consisting of
the Hubbard term and the pseudodipolar term is taken as a starting point. The Green function
formalism is introduced and the angular distribution of magnetization directions in domain
walls, wall widths as well as domain widths are derived. Influence of external magnetic ficlds
on domain structure is also investigated. The approach has rather a fundamental meaning
but it allows one to reach certain results which cannot be obtained in other models.

1. Introduction

Many experimental and theoretical papers dealt with the problem of domain structure
in ferromagnets but only recently an attempt has been made to solve the problem within
the framework of the band model of ferromagnetism [1-4]. In this approach the existence
of a definite structure is assumed and the angular distribution of magnetization directions
in the domain walls as well as the basic domain and wall parameters are calculated. Up to
now the most unsatisfactory feature of this theory is the phenomenological description
of magnetic anisotropy. A more accurate approach requires this anisotropy to bé introduced
in a microscopical and consistent form. The best solution of the problem would be to
take into account the spin-orbit interaction in the Hamiltonian explicitly. Calculations of
anisotropy, with the spin-orbit interaction as a starting point, were performed indeed
some years ago and the anisotropy constants for Ni and Fe were obtained [5-11]. Un-
fortunately, the method is complicated to such an extend that it seems to be ineffective
for such problems as the problem of domain structure. Therefore, a simpler approach,
based on the pseudodipolar Hamiltonian, is probably much more appropriate for this
purpose. As a matter of fact, it represents a rather rough way of treating the anisotropy
effects, but it allows one to obtain, in an easy way, the expressions for anisotropy constants

* Supported by the Institute of Physics of the Polish Academy of Sciences.
*% Address: Instytut Fizyki, Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, Poland.

{253)



254

as functions of basic energy band parameters [12]. For our purpose it is, as we will see,
important that this approach is fully useful for the theory of domain structure.

The aim of the present paper is to investigate domain structure problems within the
framework of the band model of ferromagnetism, by using the Hubbard Hamiltonian
complemented by the pseudodipolar term. The approach may be treated as completely
consistent and uniform, because the magnetocrystalline anisotropy is introduced here by
a term which can be presented in a form consistent with the Hubbard H:rr}honian. The
difficulty associated with demagnetizing effects which are not taken into account in the
Hamiltonian explicitly is'avoided by assuming a stray-field-free domain configuration of
Landau-Lifshitz type. We treat internal domains and surface closure domains as indepen-
dent and additive, so we perform all calculations separately for each parts of the domain
structure. For internal domains, the angular distribution of magnetization directions in
the Bloch walls as well as basic wall parameters will be found. Next, with the surface flux
closure structure introduced, the domain width will be calculated. The influence of the
external magnetic field on the ferromagnet with domains will be also discussed. In order
to simplify calculations we will take under consideration a crystal of simple hexagonal
structure with the z-axis along the hexagonal axis.

The problem in question was already discussed by us in the form of a short digest
[13]; this paper presents the theory in a more detailed and extensive way.

2. The Hamiltonian

As a starting point of the presented theory, the Hamiltonian consisting of the isotropic
Hubbard term and the pseudodipolar term responsible for anisotropy effects is taken as

% = %1+%Aa (1)
where ‘
Hy= Y Tibubje+1Y bibybiib;, 2)
e J
and
Hoy= Y, Di[S:8;=3r5;"(Sis)) (Siwi ) )

<ijy
In the above expressions, b;, b;, denote creation and annihilation operators of electrons
with the spin ¢ = 1 or | in the Wannier representation at the lattice point i. 73; is the
hopping integral from the lattice point i to its nearest neighbour J and I represents the
intraatomic Coulomb interaction between electrons. The pseudodipolar constant D;;
equals D if the sites i and j are the nearest neighbours and 0 otherwise; r;; is the.radius
vector and S; is the spin operator, the components of which in the second guantization
representation are:
S = %Z bit'bi—aa Sl _;' Z 3bi_;bi—aa Si=1% Z 6-bi-:—1biaa
[ a

a

where ¢ = +1 for o= 1 or —1 for ¢ = |.

.
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Then, the pseudodipolar Hamiltonian 2 4 in the second quantization representation
takes the form

Hy= Y, {Aij(bilbybTbs+bibublb ;3 biibybjibjy—4 bilbibjb)
J

i+

+B;;bifbibhbj+Ciibi biy(bhbj—bjb;)+hcl, 4)

Jt

rZ\?
A;; = —% Dij [1—3 <£> }, 5)
Vi]'

(rf—irf; 2
5 ©)

Vij

where

B;;= —3D

vy —ir};
-3 D; —5—. (7

Fij

It

3. Angular distribution of magnetization directions in the internal domain walls

The internal part of domain structure is assumed to consist of plates of width 4,
magnetized antiparallelly and separated by 180° Bloch walls. To describe this domain
structure, Hamiltonian (1) is expressed in terms of operators ¢; defined as follows [2]:

‘91’ ~ . i
b;; = COS —— C;p— 0 SIN — €;— . 8)
2 2

This transformation represents a rotation of the spin operator S; by an angle 9 about
the y-axis, perpendicular to the domain walls. The angle 3 is measured with recpect to the
easy axis and depends only on y.

Hamiltonian (1) is approximately diagonalized by means of the three-dimensional

Fourier transformation
1 - , o
_ —ilhxix—hziz) ,—
W=y )¢ T ©)

th

The fact that the rotation of the magnetization vector inside the Bloch walls is gradual and
rather slow allows us to treat the angle  as a continuous function of y and introduce the
following approximation: &, =~ &; + AiV,. This fact allows us also to assume that
transformation (9) diagonalizes the Hamiltonian with respect to the indices 7, connected
with the direction perpendicular to domain walls.
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The mean energy of the system is calculated by using the Green function formalism
in a similar way as in paper [2]. Green functions of the type G% = {Boss; B dr ate
introduced and the Hartree-Fock procedure of decoupling e. g.

Zh:’ <<ﬁ:’-+th’+m—o‘ﬂ1’h’—cﬁt+th+ma; ﬁ:;m’>>E &= %’ <ﬁ::h’ —ﬁﬁt’h’—a) <<ﬂ1:ho'; ﬁ:im">>E (10)

tin

leads to the following equations of motion

a 1
(E—'g;rh_ln—a' rha)G Frha'Grhad =" (11)

27
- (E_'d/'-rh_Ina'_EtA}A—o')G;;lao-—-lﬂrh—a g}f . Oa (12)

where
[d9\?
Fop = b+ 65 <—> , (13)
dy

&, 1s here the Bloch energy,

1 1
= N Z Nope = N Z‘(ﬁ:;wﬁrho'> (14)
th th

is a number of electrons per atom,

-~

—_— d3\?2
Efhe = Z {_2A00+3A00 sin® 9+4 AGY | —
2 dy

2
e [ 2Atm+(3Atm+Btm+B )Sln ‘9+ (A(Z) (2) (2)*)< >] Nt th+moy

Nu
2
o220 (2

tmay
T im

i S E (B(l) B(l)*) Sln ‘9 = nt+th+m a'} » ) (15)
! E o (16)
= - on
M N the .
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is the spontaneous magnetization,

ic ©

ic d9
I — " (1) A(l)_B(l)_B(l)* b
tho 2 A & 4N l:( tm tm tm )dy
tmaoy
& s 1
+ *2—(C§3,) Cor®) Sln9dy:| Metthtme ™ o E [(Ctm+c *) (2 cos? §—1)
tmoy
2
=) (C(Z) (2)*)< ) :I esth+moy {17

A, B Com It the above expressions are the Fourier transforms of the coefficients 4;;,
B;;, C;;, respectively.

Then, the self-consistent set of equations for the mean energy E of the system, the
number # of electrons per atom and for the spontaneous magnetization yu is the following

E = Zh: Erhsf(Eths) <%J1nt>> ' (18)
1
=5 ) JEas (19)
ths
17 8 ~,
=— > o S Eu)s 20
N Z (g12h+4FrhTFthL)1/2 f( thS) ( )
ths
where
1 710N\ 2
E’rhs = 1h+1 In_. @ [( A(2)+B(2) (Z)ﬂ)< )
tmo1
PN (1) (1)) o7 a9 3 2 1/2
_210-1(-Btm _Btm ) ) sin 9 d—y Nosthtme, ™ E (grh+4rth1rrh¢) ’ (21)
g = In—(Ef— Edyy) ' 22

and s = +1. The function f(E,;,) denotes here the Fermi-Dirac distribution function
and

1nt = é ﬁt+1h+m1ﬁr f—th’ miﬁrh{,ﬁ‘ch‘r_["%A

1:111: b
tm

The set of equations (18)-(20) is solved by an iterative method. As a zeroth approxima-
tion we take @ = o, s = Moy, Where index zero refers to the homogeneously magnetized
state. Besides, it is assumed that: (i) ths pseudodipolar coupling constant D is small both
in comparison to the intraatomic Coulomb interaction 7 and to the bandwidth, (ii) the
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distribution function of occupation numbers for the Hartree-Fock one electron states is
the same as for homogenecously magnetized state, i. e.

f(Erhs) = f(Erho') rho‘

Hence, the mean energy of the internal part of the domain structure (in the second
iterational step) is equal to
4

E, = Eg;+ — A —K S1dy— i & 58rh ’ o 23

COS o o ;

1 01 2 ‘ ly y lI 0 |2 67: Rehos ( )’
—4 h

ThT

where E,, is the energy of the system for the homogeneously magnetized state, Q is the
volume of the internal region and
1 6 8,], o

’ Ropo-
T80 P

tho

(24)

In formula (23), K has the meaning of the uniaxial anisotropy constant. For the simple
hexagonal structure the following expression is found

3,¢§N

K = [3D4(b100—1)—2D5(boo1 — D] (25)
D,, D, describe llere,pseudodipolar couplings between nearest neighbours in the same
and in the adjacent hexagonal planes, respectively, whereas functions b, are defined as
follows

1
b, = - 68’ ™ Pnp0 p0 (26)

N*ug
kmoo’
According to Egs. (25) and (26), the uniaxial anisotropy constant depends essentially
on band parameters such as the Fermi level position in the band and occupation numbers
for one-electron Hartree-Fock states [12].
Energy E; (Eq. (23)) is a functional of the angular distribution of magnetization

directions 3(y). Minimization with respect to 9 leads to the relation
T2 -
€0s 3 = —sn I y+A |, 27
where sn denotes the Jacobi elliptical function and " is the complete elliptical integral of

the first kind.
For the wall width and the wall energy we obtain, respectively

\/ — (28)

Su'y 7.
= 4 AK— ) 1o 29
o =4y 41;1,04920(01) el (29)

tho
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As we see, working within the framework of the band model of ferromagnetism,
we have found the distribution of magnetization directions and the domain wall width
identical as in the phenomenological [14] and Heisenberg model [15] approaches. As far,
as the Bloch wall energy is concerned, we have obtained a lower value than in other models
(analogically as in paper [2]). The difference is associated with the decrease in magnetiza-
tion in the walls in comparison to its value in the homogeneously magnetized state. Namely,
the following expression for magnetization has been derived

2 2
T 88,;, 0
~ — = & . 30
ST 2NIZM§A2§ :G<ar> e (30)

tha

The physical cause of the decrease in magnetization (and consequently of energy)
is the deviation of quantization axes of electrons from the direction of macroscopical
magnetization [1]. Here it should be stressed that only the band model approach allows
one to introduce the dependence of quantization axes of electrons on their quantum state;
in other models this is not possible. (In the Heisenberg model, a decrease iri magnetization
in domain walls was also obtained [16, 17], but it was attributed to by other effects).

It is worth-while to make some remarks concerning the so-called stiffness parameter.
The quantity 4 (Eq. (24)) influences the angular distribution of the magnetization vector
and the domain wall width, so it may be interpreted as the wall stiffness parameter. We
can see however that this parameter (defined here on the base of domain structure theory)
is different from that introduced in the spin-wave theory [18]. Namely, the spin wave
stiffness parametr is defined as a measure of the increase in the crystal energy associated
with the transversal inhomogenity of magnetization [18]. This definition refers, of course,
to a case with anisotropy not taken into account. If we exclude anisotropy from our
calculation, the rotation of the magnetization vector in the walls is linear, and from

Eq. (23)
21 o2 2 de,\?
UE = By —Ep = (&) LN [ 2, _) (1)
4/ 8Q ot Ty, ot

the

In this case, we obtain the spin wave stiffness parameter analogicaly as in paper [18].
The physical cause of both parameters (the spin wave stiffness parameter and the

wall stiffness parameter) is the kinetic energy of itinerant electrons. The difference between

them is associated with the decrease in the magnetization value in the Bloch walls.

4. Estimation of the domain width

To calculate the domain width 4 we minimize the total energy of the system (the
stray-field-free domain configuration of the Landau-Lifshitz type) with respect to 4.
We assume the total energy to be a sum of the internal and the surface region energies.
The energy of the internal part has been calculated in the previous section. To describe
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the surface domain structure, Hamiltonian (1) is expressed by means of other -operators
¢is» which now should be defined as follows

b 9 i6 9 é 39, -
o = | CO8 — — —=sin — | ¢;p— —= sin — ¢;_,.

RN Oy S S 2N (32)

The above transformation describes the rotation of the spin operator S; about the axis

perpendicular to the closure domain walls by an angle 3. The angle 3 depends in this
case on two variables: ¥ and z.

The energy E, of the surface region is calculated in the same way as for the internal

part of the domain structure. Minimization of E, with respect to 8(y, z) gives the following

didtribution of magnetization directions (we assume that I is large as compared to the
bandwidth) [3]

k*~ snt cnt
cos § = —, sind=(01- k‘“/2 — 33
s 1—k*snt - ( ) —k*snt’ (33)
where -
) 2%(,+)
= — z
Y y

and k is the modulus of the elliptical functions.

A domain structure which corresponds to distribution function (33) is slightly different
than that taken as a starting point (Landau-Lifshitz structure) since the magnetic flux
is not entirely contained within the crystal. Therefore, the Landau-Lifshitz structure should
be treated only as a zeroth approximation of the iteration {3}. Similar results were obtained
in the Heisenberg model [15].

The energy of closure domains minimized with respect to' the distribution functlon
3y, 2) is equal to

E7™ = Eoy+% KeL,LyA, (34)
where E,, is the part of surface region energy independent of 4,
A/Z'- a/2
4 1 5
&= o ~dy | dzsin® 9, ; (35)
N [¢] ¢} ’

and L; is the crystal dimension in the direction of the i-axis (i = X, y, 2).

Now, it is possible to calculaté the domain width. M1n1m1z1ng the total energy of
Landau-Lifshitz structure with respect to A(e is treated as a constant) we obtain the well-
known relation

4= cLy, . (6)

4 (4N
C=— i
(35)1/2<K>

where
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5. Influence of the external magnetic field

Here, we will consider the influence of external magnetic fields on the internal part
of the domain structure only, because calculations which take into account the surface
region, even in the simplest form, become very complicated.

Now, the anisotropic Hamiltonian (1) should be complemented by a term # » which
describes the interaction of the spin system with an external magnetic field: of strength H.
Therefore

H = Hy+H 4+ Hy, ' 37

where 5 and # , are given by Egs. (2) and (4) whereas #}, in the second quantization
representation, takes a form

Hp = ~%gup Y, (Hbigb;_,—~i6H bbb, ,+6Hbb,,). (398)

In the above expression, up is the Bohr magneton and g represents the Lande splitting
factor. To take into account the domain structure Hamiltonian (37) should be expressed
by means of the operators c;, defined by the transformation (8).

The investigation of the influence of an arbitrarily directed external magnetic field
encounters essential mathematical difficulties so only three simple cases will be discussed
‘here: (i) magnetic field directed parallelly to the easy axis, (if) magnetic field perpendicular
to the easy axis and parallel to the Bloch walls, (i#i) magnetic field perpendicular both to
the easy axis and the Bloch walls. .

The mean energy of the system is calculated in each case analogically as in paper [4]
but now Hamiltonian (37) is taken as a starting point.

The following results are obtained

Case (i)
Ly
EE+QK1dAdgzcz.9 cos &
= — K — | =] — cos* §— s
01T L, y K \dy q
0
2 6 2
i i =12 6 S nf:)lw’ (39)
4NIp,A ot
the
where
RogupH
- 40).
7 (40)
- 2K —
N

and 4, K are given by Eqgs. (24) and (25).

Minimization of energy E with respect to 9 leads to the distribution of magnetization.
directions- analogical as in the phenomenological [14] and Heisenberg. {19] models.
The same result was obtained in paper [4]. The distribution function shows that in the
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presence of a magnetic field parallel to the easy axis the domain boundaries shift in such
a way that the volume of domains magnetized antiparallelly to the field approaches zero
whereas the wall width does not change essentially.
Case (i)

L.

E = Eq,+ @ K1 vd 4 (48Y g in 9
= —_ —_— — | — — COS — g SIn
017 T L, y K \dy q

0

n? QA a
_— G| — Moo
ANIpgA® a7 ) oo (41
tho
The distribution function obtained by the minimization of Eq. (41) with respect to 3

shows that in a transversal magnetic field directed parallelly to the Bloch walls the magneti-
zation vector rotates into the field direction [4, 20].

Case (iii)
I

E E+QK1Jd{A<d9>2 * 9 sin” ]r
=Ey + —K— y-—{—] — cos” Jsin” ¢p—gcos ¢
N L K \dy J

0

Tcz A aath g 0 . 42
. e & .
TVE Byl i (42)

tho

The system energy is now dependent on angles 3 = 3(») and ¢ = @(H) which describe
the direction of the magnetization vector. Minimization of Eq. (42) with respect to ()
and ¢(H) (analogically as in papers [4, 21]) leads to the result that an increase in the field
strength causes angle 9 to become gradually a linear function of y and the domain structure
1o transform into a spiral structure.

6. Conclusions

Introducing magnetocrystalline anisotropy by means of the pseudodipolar Hamil-
tonian gives a uniform, microscopical approach to domain structure problem within the
framework of the band model.

According to this method angular distribution of magnetization directions in Bloch
walls, basic wall parameters as well as the domain width 4 have been calculated. The
obtained results are in agreement with those of the phenomenological and' Heisenberg
models. Moreover, the method allows one to find the expression for the anisotropy constant.

Therefore, it is possible to state that the domain structure problem can be really
solved within the framework of the band model of ferromagnetism and it constitutes
another approach to the discussed problem apart from the phenomenoiogical and Heisen-
berg models.
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Compared to the phenomenological model, this approach is of a fundamental rather
than of practical significance. But, it should be pointed out that the i investigation of domain
structure in the band model leads to certain results which can not be reached in other
theories. Namely, only in the band theory it is possible to introduce a dependence of
quantization axes of electrons on their quantum states. As a consequence, a lower value of
magnetization is found for the state with domain structure as compared to the value for the

homogeneously magnetized state. So, the wall energy is lower than in phenomenological
and Heisenberg models.

A modification of energy bands in the presence of domain structure as well as the
position dependence of the length of the magnetization vector and of the number of
electrons per atom are examples of other (not discussed here) results which can be obtained
within the framework of the band model in a simple and natural way.
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