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An Ising model in a transverse field with general spin S is considered by spectral density
approach in the unordered region. Expressions for the temperature renormalized excitation
spectrum, the one-particle transverse correlation function, and the critical exchange-field
ratio, are derived in two versions. At T = 0K expansions for thermodynamical quanti-
ties are given in the limit of weak interaction and critical ratios are calculated for several
values of S.

1. Introduction

The S = 1/2 Ising model with transverse field has been a topic of investigation for
about ten years. It describes the magnetic propertiés of singlet-singlet group state systems,
and those of hydrogen bonded ferroelectrics and cooperative Jahn-Teller systems (Refs [1, 2]
and references therein). Theoretical calculations by means of the first order Green-function
method were performed by Wang and Cooper [3, 4], and Pink [5], whereas the perturba-
tion expansion method has been applied for zero and low temperatures in Refs [6, 7],
respectively. Expansions in powers of the high-density parametrs 1 |z are given in the papers
of Stinchcombe [1, 8] and Shender [9]. Recently, Refs [10-12], the methods of moments
were used and agreement with the perturbation technique results was achieved. Critical
values obtained by various authors are compared and results in Pink’s decoupling are
estimated by Popielewicz [13].

In the preceding paper [14], we considered the Ising model with transverse field for
general spin §'in the paramagnetic region within the Green-function method in the random-
-phase approximation. In the present paper, we propose a spectral density approach to
this model. General expressions in the two versions for the thermodynamical quantities
are obtained and zero-temperature characteristics are given explicitly. The structure of
this paper is the following: Section 2 includes some definitions and expressions for the
Green functions, as well as an expression for the temperature renormalized energy

* Address: Instytut Fizyki, Uniwersytet A, Mickiewicza, Matejki 48/49, 60-769 Poznafi, Poland.
(243)



244

spectrum; in Section 3, the relations for the one-particle correlation function in the field
direction and the critical ratio of the exchange interaction (the transverse fiedl upwards of
which the paramagnetic phase is unstable) are derived; in Section 4, zero-temperature
results are given in detail. Finally (Section 5), we discuss our results and check the self-
consistency of the calculations.

2. Green functions

We consider the Hamiltonian of the transverse Ising model of the form

H=-4Y8-4r Y J"8;S;, Q.1
J

I=m

where S‘?(oc = X, y, 2) is the spin operator for the ion at the lattice site i; J* —the positive
exchange integral between ions at sites 7 and j; 4 and I' are constants of the model. The
exchange integral is a function of the distance between the ions, and is restricted to nearest
neighbours only.

We shall use the method of Zubarev’s temperature-dependent commutator Green
functions (Ref. [15]). The Green function {A(1)|BY and its Fourier transform A\BYg
are defined as

CAW®)|BY = —i0(1) <[A(1), BT) (2.2)
CAiBy = ] dcd() By, 23

respectively. The Green function ((2|§)>E fulfils the following equation of motion:

EQA|BY; = <[A, BIy+«[A, A] |BYs. 2.4)

The spatial Fourier transforms S and SZ of the spin operators S% and S

8E = Y §tevH 2.5)

J
Sz =Y 85" (2.6)

J

satisfy the following commutation relations
[3¢, 801 = 2820 @7
[85, 881 = F iz (2.8)

The Hamiltonian (2.1), expressed in terms of the spatial Fourier transforms SE and 8z,
is of the form

2 N r Ao N oS
H = —4A8— ~ Z J) 28FS; +8-82,.+818%), (2.9)
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where . .
J(ky = Y JmeiTm, (2.10)

m

The operators SF fulfil the equation of motion

. A A " 4r 7 o .
iS¢ = [Sq, #] = A8 — e E J(©)SZ_(ST+8570) (2.11)
~ - a_ 4T Az oA+ Ao
iS7 = [Sp#] = —45; + v J@©)S:_ (8*.+8D). (2.12)
We linearize the equations of motion of the spin operators S to the form
[8:, #] = &4 S +05,87, (2.13)
[Sh, #] = — 04,8 —o%.87,, (2.14)

where the coefficients Q%, and Q%, will be defined within the spectral density method
[16, 17] rather than by explicit RPA-like procedure. We introduce, after Ref. [17], the
matrix Green function G,(E) and matrix spectral density function @,(E), where

«8¢180) «8E18 L,y )

G(E) = JA2 A" Al a 2.15)
= <<<s_krsk > €8I35 S

1
PYE) = — —Im GE+ie). (2.16)

T
If we want to conserve, within first order Green-function theory, two moments of the

spectral density @,(E) (for details see Refs [16, 17]), then

Q1 = <[5, A1 Sc DIKISE 8> (2.17)
Q. = —<[[8(, #1, SIS, 81> (2.18)

After straightforward commutations on the right hand side of Eqs (2.17) and (2.18),
we obtain

. 2TJO) ]
.(212 = oN2 '))x(<S,€ S, >+<SK S—K>_2<Sx—ksk—x>, (220)
where
7 = J(K)/J(0) @21)

o = {(S%. (2.22)
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‘The following results are easily obtained from the standard procedure of Green-function
theory

Ek = \/(Q’i 1)2_(-(2’;2)2

ﬁE 24y, 1/2
[1+ “Z (E /A) 5 T GNZ Z R K>] (2.23)

K

878> = No |4 £+€— thﬁ—k—l (2.24)
K Ok ) E "4 ) .
S No 3 (A _ Er) oo P 2.25
(k(,—k> o} Ek"ZCO Eak (2.25)
‘where
A = 4I'J(0)/4 (2.26)
. 1 for OSDM (ordinary spectral density method [16]) @.27)
~ )(0/S)? for MSDM (modified spectral density method [18]). ’
‘The value (¢/S)* of the parameter o follows from the replacement
ljo — a/S? (2.28)

in the first two components on the right hand side of Eq. (2.20). The relation (2.28) cor-
responds (Ref. [18]), in the case of the Green-function theory of isotropic Heisenberg
ferromagnst, to Callen’s decoupling. It is worth noting that ¢/S# 1 even at T = 0°K due
to zero-point motion. Expression (2.23) represents a transcendental equation for the
collective excitation energy and includes two quantities: o and <8282 >, which have to
be calculated in order to close the thermodynamics.

3. Transverse correlation function

We introduce after Haley and Erdds [19] standard-basis operators Lap = |ay <ﬁ |
in the §° representation, where

> =[S, S—eap, (x=0,1,..,25). 3.H

The spatial Fourier transforms £, ,

AL

1B em ZLM . ' (3.2)

.of the operators ﬁaﬂ,a fulfil the following commutation relations
[S:, Lot 10] = ML = LA 5 (3.3)

[Sk ’ a‘l 1 oz] = Ma+1L’§z.:-KZ a_—Moz 1L,Zz—:-'€1,az 1> (34)
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where o
M, = [S(S+1)—(S—a) (S—a~1)]"2 (3.5)

We consider the Green functions ((Sk |L¥ +1.08 and ((S:k]i’;J,l,a))E. On solving the
set of equations of motion (2.4) for our Green functions and wsing the condition that
in the paramagnetic region

87w By s> ~<KB87)> =0 (3.6)
we obtain

CSHEE 1 = <8, Biv )

x[1(1+%> ! +1<1 Q) ! ] (3.7)
. E,JE—E, ‘\’  E JE+E/]’ B
IR ar a ok 1 1 :
$8uilis 10y = <I8 Lowrald (— 51?) [E_ = EIE] (3:8)

where we have decoupled the high-order Green functions according to Egs (2.13) and
(2.14). The quantities E,, Q% and @, are given by Egs (2.23), (2.17) and (2.18), respec-
tively. On the ground of the spectral theorem [15], the Green function (3.7) leads to

=0 3.9
a+1 1+(p o ( )
where 0
= (L (3.10)
1 E, 4 BE,

¢ = -1+ -— ZE L Z ) coth T2, 3.11
TN ‘(A - Ek>°° 2 (3-11)

k

Finally (for details we refer .the reader to the Ref. [14]), we obtain:

(S @) (1+¢)2S+1+(1+S+¢)§D25+1
(1+¢)23+1 ¢2S+1 =

(3.12)

The two-particle correlation function ¢8287,> can be calculated approximately by means
of RPA-like decoupling

(Si87> = (80 (8%

In this approximation, the expression for the collective excitation spectrum is of the form

1/2
E" [1 2Aavk+——z :l . (3.13)
(EK/A) 2
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The set of selfconsistent Eqs (3.11), (3.12) apd (3.13) describes the thermodynamics of
our model and can in principle be solved numerically throughout the entire range of
temperatures. These equations simplify at 7 = O°K; nevertheless, the analytical expressions
are available in the special weak interaction limit only. We present our zero-temperatiire
results in the following section.

4. Zero-temperature results

At T = 0°K, Egs (3.11) and (3.13) take the simpler form

[1 2Aayk+——z o A] @.1)

¢ = 3+ i (E‘ 2 A). (4.2)
4N , 4 E,
k
The condition
2do— AN e 4.3)
N E/j4

determines a critical value 4, for which the gap at % = 0 vanishes. For 4 > 4, the gap
becomes imaginary, indicating that the paramagnetic state is unstable and a transition
to the ordered state occurs. At 4 = A4,

= V204, 1—y,. 4.4)

On insertion of Eq. (4.4) into Egs (4.2) and (4.3), we obtain by simple algebra

e lz Eof, o lz_l_—] . 45
+4|:\/20A°N ‘ 1=y + N 4 T (4.5)
— 1 oc -occ 2
A (E RN G R R
’))k
e 4,7

The right-hand side of Eq. (4.6) depends on ¢ and the lattice sum c¢. Therefore, the quantity
& is expressed by ¢ and we can solve Eq. (3.12) numerically. After that, by insertion of o

where
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into formula (4.6)'we obtain A.. Our expressions include standard lattice sums already
calculated in the literature. We take, after Refs [3, 20],

1.111 for SC
1 Z 1
— ——— = {1.084 for BCC
A V1=, . ‘

: g 1.071 for FCC

0.975 for SC

1N

5 J1—y, = 20.981 for BCC 2

L _0.986 for FCC

The values of 4, for several values of S at T = 0 K are listed in Table I. In the particular
case S = 1/2 our results agree with those of Wang and Cooper [3] in TSCA approxima-
tion (which corresponds to our MSDM approximation) and of Pfeuty and Elliott [6]
in series expansion method (see also Ref. [13, 21, 22]).

TABLE I

Critical values A for cubic lattices, nearest ‘neighbour interaction
. Simple -cubic Body-centred cubic Face-centred cubic

S ‘ |

OSDM MSDM OSDM ' MSDM OSDM | MSDM
% 1.199 1.186 ‘ 1.147 | 1.139 1.121 | 1.116
il 0.547 0.546 0.535 0.534 0.529 0.529
%— 0.354 0.353 0.349 - 0.349 0.346 0.346
2 0.261 0.261 0.259 0.259 0.257 0.257
% 0.207 § 0.207 0.206 0.205 0.205 0.205
3 0.172 0.172 ‘ 0.170 : | 0.170 0.170 I 0.170

We can expand the right-hand side of Eq. (4.5) in terms of (xc/20) <1

¢_—1+1[1 2—9; <<xc> 1° Ve " ] s
— 3 il = Er—— _ R e— ces . .
N - 2 2N: : -

- Vi-y o - \/ Vi

If §— oo, then (xc/20) — 0. Therefore

1 1—y/2
2N - Vi- Tk .
The asymptotical expression (4.9) is identical with that of Ref. [14], obtained in RPA

approximation. It can be easily shown that the asymptotical value of 4, also coincides
with the RPA result :

(4.9)

&S = o) = —3+

A, ~ 1/28 (4.10)
as S — oo.
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In the following, we consider the opposite limit of a weak interaction S4 < 1. We solve
the set of Egs (4.1), (4.2) and (3.12) by means of an iterative method expanding E;, ¢
and ¢ in a power series in 4 up to order A*/z2. The quantity ¢ has, according to Callen
(Ref. [23]), the following expansion in ¢ '

6=8S—0+Q2S+1)P* 1y (4.11)

We start the iterative procedure taking as the zero approximation E,/4 = 1. Then, from
‘Eqgs (4.2) and (4.11), it follows that ¢ = 0 and ¢ = S.
We return to Eq. (4.1) and obtain, as a first approximation,

E 1 8 _
' Zk = /1248y, (4.12)

and appropriate expressions for @ and o. After a few rather tedious iterations, we obtain
the following results: '

B 1ous A7 1 Aas3( 2_ 3 + (4.13)
AT T\ T ) T T \ T g ) T '
AZS /12 SAZ SZAZ A2s2' ?S+1

o= [1— —4—Z—<1+ Z; —%7 +% - >] +(2S+1)< i ) 0s,1/2- (4.14)

In these calculations, we restricted ourself to the case of hypercubic lattice and took the

relations
1 z : , |1
il = 4.15
N Vi . ( )

1 b B TR '

given e. g. by Stinchcombe in Ref. [8].
The expressions (4.13) and (4.14) enable us to calculate other thermodynamical
quantities. The free energy is expressed by the formula

HYIN = ~4s|1 izﬂ‘—}
N _“G[Jer EJA

k o

AZS A2 SAZ SZAZ AZSZ 25+1

It is worth noting that the expansions (4.13), (4.14) and (4.15) are independent of «. In the
particular case S = 1/2 they agree very well with the results of the series expansions
method (Ref. [6]) and high density method (Ref. [8]).
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5. Discussion

We have analysed the thermodynamical properties of the general Ising model with
transverse field in the paramagnetic region ‘within the framework of the Green-function
method. Expressions for the excitation energy spectrum, transverse correlation function
and critical ratio were derived in two versions and zero-temperature results were proposed.
They are shown to be independent of the parameter o in the weak interaction limit and
dependent on « in the critical region A ~ A,.

Replacing vy, by 0 in Eq. (4.1), we obtain the mean-field results ® = 0 and ¢ = §
at T= 0 K. (There is no quantum-mechanical reduction of spin). The critical value A,
in this approximation is equal to 1/2S. Corrections to'that result due to zero-point fluctu-
ations are appreciable. They attain 209, for spin one-half, but in RPA [14] amount to
a few percent only.

It is worthwhile to check how well the condition

e 1 PSP
(s )2> = F Z S8y =0 (.1)
k
is obeyed. In the weak interaction limit we obtain
e o A’S° 1 .
(S)D/S = s 75 +0(4%) < 1. (5.2

For comparison, in RPA
) SIS = A28z +... <1. (5.3)

It is evident that the condition (5.1) is very well justified for § = 1 /2 in our present SDM
calculations.

TABLE II
Values <(§—)2>/S calculated at the critical point
‘ S=1/2 S=1 S =32 }‘ S=2 S=52 S=3
= i = — — — N o — —_

SC: [ |
OSDM —0.0054 0.031 | 0.043 I 0.050 0.053 0.056
MSDM 0.0000 0.033 ! 0.044 0.050 0.053 0.056
RPA 0.066 0.067 0.067 0.067 | 0.067 | 0.067
BCC: ’ i |
OSDM —0.0032 0.024 0.033 0.038 | 0.041 ‘ 0.042
-MSDM —0.0000 0.025 0.034 | 0.038 0.041 0.042
RPA 0.050 | 0.051 : 0.051 0.051 0.051 0.051
FCC: | |
OSDM —0.0024 | 0.020 0.028 0.031 0.034 0.035
MSDM 0.0000 0.021 0.028 0.031 0.034 0.035

RPA | 0.042 0.042 0.042 0.042 0.042 0.042
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At the critical point

AL [ e ol b 1 -

For comparison, in RPA

amzy _ L
ASTHD A Nzx/l_n (5.5)

We present the numerical values {(8))/S in Table II. They are of the order 10-2. It is
obvious from the results of Table II that for § = 1 /2 the condition (5.1) is very well fulfilled
in our MSDM calculations.
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