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' DETERMINING THE ENERGY FOR.THE ELECTRON TRANS-
MISSION BETWEEN TWO NEUTRAL ISLANDS IN A DISCON-
TINUOUS LAYER

By K. KemPA, B. LICZNERSKI AND J. MARKOWSKI
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The common properties of. discontinuous metal films deposited on insulating substrates
are discussed. An attempt has been made to determine the energy necessary to transpose
an electron from one neutral island to a nelghbourmg neutral island, using the Thomas—Fermi
method. From the analysis it follows that the value of this energy will depend s1gmﬁcantly
on the kind of metal, dimensions of the islands, and distance between them.

1. Introduction

The properties of discontinuous metal layers associated with insulating substrates
and the conditions for an electron transition from one neutral island to another, i. e. genera-
tion’ conditions of pairs of islands (electron-hole) with different (positive and negative)
charges are the subjects of this paper. A problem, similar to the electron transition one
discussed here, was solved by Neugebauer-Webb [1], Hill [2], Abeles and others [3].
Their solutions were based on electrostatics.

In the present paper an attempt has been made to determine the energy necessary for
an electron to translate from one neutral island to a neighbouring neutral island, using
the Thomas-Fermi method. The above method, unlike the former ones, allowed one to
take into account the effect of the metal used for the construction of the island on the
generation energy of the electron-hole pair. The determination of the generation energy
of the pair contributes to the understading of the nature of the activation energy of
electric conductivity in discontinuous metal layers.

* Address: Instytut Technologii Elektronowej, Politechnika Wroclawska, Wybrzeze Wyspian-
skiego 27, 50-372 Wroctaw, Poland.
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2. Generation of @ pair of islands having different charges

We determine the energy necessary to transfer an electron from one neutral island to
a neighbouring neutral island. The electron leaving the island charges it positively (it
moves in the field of a positively charged island), whereas entering the island it charges it
negatively (it moves in the field of a neutral island). .

Let us assume that each hemispherical island consist on N atoms distributed regularly,
and that each atom can be described by the Thomas-Fermi potential (¢). The potential
of an electron at point 4 (Fig. 1) has the form:

N N
Vy= 21 @o([F1—as)+ @.(ry—au)+ —21 @o([ri—P—az,|)+4,, (N
‘n#k

where the first term of the sum denotes the total potential produced by neutral atoms
of island 1; the second term denotes the potential produced by a singly ionized atom of
island 1; the third term denotes the total potential of the deformation of the system of
electrons produced by neutral atoms of island 2; 4, — global potential associated with
the deformation of the system of electrons caused by the electron leaving the island.

A1y = alxi+a1yj+a1zk

i, j, k — integral numbers a,, a,,, a,, — vectors of the lattice basis.
At point B the electron possesses the potential

N N o
Vg = Zl Po(|r2—as) + _21 ‘I’o(l;z+P'“a1nD+ @+(fra+P—ayl)+4,, 2
n#+k

where the first term of the sum denotes the global potential produced by the neutral
atoms of island 2; the second term denotes the global potential produced by the neutral
atoms of island 1; the third term denotes the potential produced by singly ionized atoms
of island 1; 4, — global potential associated with the deformation of the system of electrons
caused by the electrons entering the island.

Fig 1. System of two neighbouring islands. Ry = ri—duk; Riz = ri—P—as;; Ray = P2+ P—asy;
Ryy = Fa—azk

.

From geometrical considerations (Fig. 1) it follows that

1;1 —,ami = l;l——a—Zn] (3)
and

ry—P—d,, = [ratP—dy,. 4)
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Inserting (3) and (4) into (2) we get

N N
Vg = Zl pollri—amD+ Zi @ollr1—P—ag,|)+ @ (lri—P—azi)+4,. &)
n¥k .

We determine the difference between the potentials at points 4 and B using the relations
(1) and (5).

AV = V=V = dg(iri—ay)—Ae(jiry—P—ayl)+4,—4,. ©)

Further on we determine A¢ with the help of the Thomas~Fermi method.

3. Thomas-Fermi method [4]

The statistical Thomas-Fermi method is, among others, used to determine the atomic
potential taking into account the effect of all the electrons. In this method the following
differential equation is solved numerically

d’e @37
PN e

With the following boundary conditions

, Z—M
o(0) = 1, D(x,) = 0, Xo® (xg) = — _T ,

where @(x) is a normalized potential, x — normalized distance from the nucleus, Z —atomic
number, x, — normalized radius of the atom, M — number of electrons.

The relations between normalized and real quantities are given by the following
equalities

eZ
p=A+ 8)
4neyr
r = 4.685 - 10-° xZ~1/3 [em] )
e(Z~—M) ,
A= = 10
@(xo) 4meoR (10)

where R is the atomic radius (R = r(x,)), &, — dielectric constant.
It follows also from the Thomas—Fermi method that for x > x, i. e. for r > R, ¢(x)
takes the form of the Coulomb equation

) = (10
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In Fig. 2 the outline of the solutions of (7) is given, whereas in Table I the values of x,
are given for different values Z of atoms singly positively ionized. The potential difference
between neutral and ionized atoms can be calculated from the relations (8) and (10).

1

Fig. 2. Function @(x) in outline

TABLE T
Values of x, for different Z of atoms singly positively ionized after Brudner [5]
Element 4 xo (TF Brudner) xo (TFA Kobyashi)
Lit 3 4.589060 ! .
Nat 11 11.60870 | 11.604
K+ | 19 ]5.68552 15.678
Rb* | 37 2187429 21.857
Cat | 55 26.31931 —
TABLE II
Some values of @(x) for a neutral atom after Bush [6]:
—_— = —
X \ 10 15.01 20 20.87 ‘ 21.82 ‘ 126.67 30 * 34.29
D(x) 0.0244 0.0109 0.0058 0.0053 0.0048 0.0030 0.0022 0.0016
In view of the data given in Tables I and IT we get
[ e
l — —r =R
4meyr : ,
4o ~< _ (12)
e
— - — <r <R
[ 4neR

Then we can write (6)
AV = Ag'+4¢",
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where . B
dneo|r; —a
e
d¢" = — 4neoe,R12 +4,—4, (14)

g, is a relative dielectric permittivity of the medium separating the islands.

. R12« = ,|;1 “?*52k|~

4. Determining the change in electron energy corresponding to the change in the potential

According to the first order of disturbance calculus we can write that
E, = Eo,—<yaldo|pey = EO,—eI le,iZA(pdv (15)

where E; is an electron energy at a disturbed state, E,, — electron energy at an undis-
turbed state, y,, — wave function of an undisturbed state, v — volume.
Hence,

AE = E—Eq; = e[ [y’ dgdv. - (16)
It may be written that

j|zp0,|2dv = L amn

A fragment of the island in the neighbourhood of the k-th (ionized) atom is presented
in Fig. 3. Because of the low probability that a conduction electron is within the ion of
the lattice.

o> ~0 for r < Fis

Fig. 3. Fragment of the crystal lattice of an island in the neighbourhood of an ionized atom. r j — radius of
a lattice ion; R — atomic radius-resulting from. the Thomas—Fermi method



212

where r; is the ion radius, i. e. |p|® # 0 only within the volume v, (Fig. 3). Therefore,

formula (16) can be written in the form
AE = e j I‘PozizAfde = Wotl’ze I Agpdo.
Similary
jl’Potlsz = _[ Wozlzdv == ]Eotlz j dv = 1.
Assuming that |y’ ~ |iy,|? and inserting (19) to (18) we get
AE = AE'+AE",
where
e
4E = — JA(p'dv

Uy
vy

e
4E" = — jd(p”dv.
Uy

On the grounds of Fig. 3. equality (21) can be written in the form
e
A4E =5 | agrdvt £ f Aq'dv
Uy Uy
v2 v1—0U2

from (12) we see that within the volume v,

e
e 4megR
hence
AE, = ij‘Atp'dv __ < n
vy 4reqR v,

v2

(18)

(19)

(20)

1)

(22)

(23)

24

Ag' for r > R due to charge screening in the electron gas can be described by the formula

resulting from application of the Thomas-Fermi method to the electron gas

’ r -1
Ad¢" = Bexp = r,

2N\ -1/2
P (L
2e0Er

(for example A = 0.7 A for Au—see [7] Fig. 8.8).

where

25
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Since
)
d¢' = — for r = R then
4neqR
&> R 26)
= o ——exp | — .
T\
Thus
’ e ’ B -1 r
AE; = — A¢'dv = — r rexpl|l — —)dv 27N
Uy Uy \ vy
V12 vy — 2

To evaluate the integral (27) let us notice that the integrating function is strongly decreasing,
and for this reason the essential contribution to.this integral is. given by the nearest
neighbourhood of volume v,. Thus, neglecting lattice ions surrounding volume v, we
can write

T + o

2z

, B ) -L é A
AE, = — | dé|sinfdf | re *dr=— —AR{1+ — ). (28)

. Uy o Eoly R

0 1] R
We can also write that
3

vy = Ui-"% TU';N = 'g"ﬂN (4—7"’: —r;') 9 (29)

where v; is a volume of island, n, — atomic density in the island, and
v, = 2 n(R*=r}). (30)

According to (29) and (30) we can rewrite (24) as follows

2 R3___ 3
NE Ry =T (1)
4negyR N _3_~ .0
4nn, 7
Similary
e’ AN[N/( 3 ok
: AE, = — — JR[1+ — )| = —r3 : 32
2 dre, ( + R)l:3 <4nna r,)] (32
Thus, finally
e2,
AE = AE{+AE, = (33)

* 4meoNR,
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where

3
(,~ — if) R
Ry iAok 34

ef (R+}')3__(r3+/13)' .

Let us now estimate the quantity 4E". To estimate the difference 4; —4, occuring in (6)
we shall use the mirror reflection method. The system metal ball-charge is replaced by the
system of 3 point charges [8].
Then :

3

rr qm -
A’ = E R 35
4 _ 4negR,, (35)

m=1

where R, is the distance from the charge ¢,(m = 1, 2, 3). By assuming that the electric
field penetrates only into a thin surface layer of the ball (the thickness of the layer is C)

we get
2n R; ® 3
re € Y5 . qmb
AE" = Jdé J r ersmO(. E o = .)dé), (36)
dneoev, d = ; e \/r2+Lf,,—2er cos

where L, is the distance of the charge g,, from the centre of the ball (m = 1, 2,.3), R, — ball -
radius. Hence we can write

e’R?C

AE:/ i
b s
Soarlel

(37)

where L, = (|P|—R,). Because for connected islands (|P| = 7 R) is AE’ = AE", finally
we get

e? R,
A4E = — — 1= —= — 1, (38)
4megNR ¢ ee(|P[—R))
where
- 1 - L1 = Ri ’
Bt = {8, - L,—R; > C. (39)

5. Final remarks

Calculation of the énergy AE of electron transition from one neutral island to a neigh-
bouring neutral island has been based on the Thomas-Fermi method. From the analysis
of formula (38) it follows that the value of the energy will depend significantly on the kind
of metal, geometry of the system and kind of medium. In the theories so far considered
the kind of metal of which the discontinuous layer was made has not been considered.
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TABLE III

Island Experimental | Theoretical

Radius of
F Eq. 38) | F Eq.
Material island ’ spacing data [2] data [2] rt% Te fq=(1 ) ;(());ns fi 232)
& | & V) V) ‘ S
| | T _
Gold | R«A) P2R; | ) 8E, |  AE(eV) 4E (V)
0;‘ soda | 25 40 0.087 0.062 0.056 - | 0.081
glass |
| 30 40 ‘ 0.038 ) 0.050 0.037 ' 0.058

Table III compares values of AE obtained from equation (38) with theoretical and
experimental data obtained by Hill [2]. The present paper is an analysis of a system consis-
ting of two identical islands. It should be considered additionally that we are dealing with
a multi island system, that the islands have different dimensions and the distances be-
tween them are different, and that there exists an interaction between islands and sur-
roundings. (This has been partly considered in formula (39)).
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