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The modes of propagation of weak magnetogasdynamic (MGD) discontinuities have
been determined by using the compatibility conditions. A set of differential equations govern-
ing the growth and decay of weak MGD discontinuities has been obtained in the presence
of a transverse magnetic field. The particular case of a planar wave front has been studied
in detail. It is shown that if a weak discontinuity is a compressive wave of order /, it will
terminate into a shock wave after a critical time 7.. On the other hand if it is a rarefaction
wave, it will decay and will damp out ultimately. The effects-of the magnetic field will cause

-«morerapid damping effects. The expression for 7. has been obtained and it is shown that the
magnetic field effects are to decrease the critical time ..

£

1. Introduction

In recent technological developments several researchers [1, 2, 3, 4, 5, 6, 7] have made
significant contributions on the spontaneons formation of shock waves in supersonic
flows. Becker [5] provided a new physical approach to this problem of a simple model
for the formulation of shock waves caused by the accelerated movements of a piston
in a tube filled with a quiet gas. Recently Balaban [8] studied the formation and propagation
of acceleration waves in elastic-plastic materials and McCarthy [9] studied the growth
of thermal waves. McCarthy [10] also investigated the thermodynamical influences on
the propagation of waves in electroelastic materials. Ram and Srinivasan [14] studied the
effects of thermal radiation on the propagation of sonic waves in gases at very high
temperature. The object of the present investigation is to study the propagation of weak
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discontinuities in magnetogasdynamics and to investigate the conditions under which
these will either terminate into shock waves or will damp out ultimately.
The fundamental system of equations governing the continuous MGD flow are [11]
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where o,p, U; and H;, respectively, represent density, pressure, velocity components,
and magnetic field components and a comma followed by an index (say i) denotes partial
differentiation with respect to the corresponding coordinate (X°).

2. Modes Qf propagatwn

Let us cons1der a. movmg wave E(t) which-is such that the ﬂow parameters are
continuous across the wave front X(¢) but their first and higher derivatives are discontinuous.
Such a discontinuity is defined ‘as a weak-discontinuity, or a sonic wave [7]. The wave
surface Z(t) is assumed to be regular so that there exist limiting values of flow parameters
and their derivatives as the surface is approached from either side. The geometric and
kinematic compatibility conditions of first and second order for such a singular surface

are [12]:
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where g% , b,y are, respectively, the components of first and second fundamental tensor

of the surface, n; are the components of the outward unit’ normal vector drawn in the

0Z
direction of propagation’ and = Zn. G represents the velocity of propagation
n -
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of the wave. The capifal bracket denotes the jump in the quantity enclosed across ‘the
wave. Using (5) in (1), (2), (3) and (4) we get.
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Solving for A; we obtain
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In order that the equations (11) have a non-trivial solution for 4; the following condi-
tions should hold: S
vi=Ym,
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where U = G~ U, is the relative velocity of propagation of the sonic wave. This shows
that there are three possible modes of propagation of weak MGD discontinuities namely
Uy, called Alfvén speed. Uy, the fast magnetoacoustic speed and U, the slow magneto-
acoustic speed.
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3. Growth and decuy' of sonic waves

Let us now consider the case when the wave front is moving in 4 quiet-gas with
magnetic field-transverse to the direction of propagation. In this case the Alfvén and the
slow magnetoacoustic modes of propagation will disappear and the wave will propagate
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with the effective speed of sound. From the equations (7), (8) and (10) we get the relations
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Differentiating (1), (2) and (4) partially with respect to X ¥ and taking jumps across
the wave front with the help of compatibility conditions, we get
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where Q is the mean curvature of the wave and > is the time operator as observed from

the wave front X(¢) and
i = [Uyplnm; ¢= [P jlnjngs = Lo nlnjmu
In view of the relation (11) we have
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Eliminating J-time derivatives from equations (12), (13) and (14) with the help of (15)
we get
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Let X(t,) represent the sonic wave surface at the initial time ¢, and let ¢ represent
the distance measured from X(#,) along the normal trajectories. Then we have ¢ = G(f— 7o)

and the scalar functions 4, &, { can be regarded as functions of ¢. Hence using (16), (17) and
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(11) in (12), (13) and (14) we get
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Differential equations (18), (19) and (20) govern the growth and decay of sonic waves
during propagation. In view of relation (11) equations (18) and (20) are derivable from (19).
Therefore, the equation (19) is sufficient to predict the growth and decay of sonic waves
associated with the wave front Z(¢). The mean curvature Q of the wave Z(¢) is a function
of ¢ and is given by [13]
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where Q, and K, are respectively the mean and Gaussian curvatures of the wave front
at the initial time #,. Substituting for  in (19) and integrating we get
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which determines the strength Z— of the discontinuity as a function of ¢. In order to.
1]

predict the phenomenon more clearly we consider an interesting case of a plane wave
front for which Q = Q, = K, = 0, 4 = 0. In this case equation (21) provides us the

following relation
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which can be written in the dimensionless form as
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From relation (22) we conclude that if the initial wave is a rarefaction wave o < 0);
the discontinuity { will go on decaying during propagation and will damp out ultimately.
On the other hand if the initial wave.is a compressive Wave ({o > 0), then the discontinuity {
will grow continuously till it tends to infinity as

@
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In such a situation the continuity of the flow parameters will break down and consequently
a strong discontinuity called shock wave will automatically appear. The critical time ¢,
for the termination of a sonic wave into a shockwave is given by

) S
B(,G

The other discontinuity parameters ¢ and A will also behave in a similar manner.
In this case the magnetic field effects ‘will cause earlier termination into a shock wave:
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