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In the usual form of quantum hydrodynamics there are two ways of introducing the
velocity operator; one in terms of the inverse of the density operator o(X)~* and other
without using this inverse. Equivalence of these two approaches is investigated in this paper.
An approach based on an integral equation is also shown to be equivalent to the above
procedure. The velocity-velocity commutator is derived based on the non-relativistic current
algebra. It is found that this commutator is not zero.

1. Introduction

In the process of quantization of classical hydrodynamics Landau [1] gave two defini-
tions of the quantum velocity operator o(%):
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where o(X)and J (x) are respectively the mass density and the mass current density operators
satisfying non-relativistic current algebra [2]. Equations (1) and (2) may respectively
be called the direct and the implicit definitions of the velocity operator. Landau has not
established the equivalence of these two definitions, nor has he éxplicitely evaluated the
velocity-velocity commutator which plays a significant role in the quantization of hydro-
dynamics. The velocity-velocity commutator has attracted a great deal of attention [3-5]
and is still a puzzling problem. In this contribution an attempt has been made to understand
this question. '

Recently Yamasaki et al. [6, 7] have proposed a definition of the velocity operator in
terms of an integral equation in the wave vector space and claim that the velocity-velocity
commutator vanishes for a many-boson system while it has a non-zero value for a many-
-fermion system. This observation is a significant one, since on the basis of the non relativ-
istic current algebra such a result is not anticipated. A study is made of this point as well.
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2. Equivalence of Landaw’s definitions

Assuming that the inverse of the density operator exists, it readily follows from (1)
that

o(MBE) +5(He) = JE®)+H eI Fe() " + eI (R)eX)}. 3

From the algebra of currents [2] we have
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where u = 1,2, 3 denotes the three spatial indices. We thus have
()™, (Me(®) + o) (Ne(®) ™" = 27,09,

where the limit y — x can be taken smoothly. Substituting this in (3) the implicit definition
is obtained.
Starting from (2) we have
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It is easy to verify that
oR, (P + o) 0, (Me® = [[e(), v, M 6311 +20,0) %)
and if we assume that '
[0(), [eG), v, (NT] = 0 ©
the limit y — x can be taken easily in (5) and on substituting this result in (4), the direct
definition (1) is recovered. /

Thus while definition (2) follows directly from (1), definition (2) implies (1) only if
the condition (6) holds. It should also be remarked that assumption (6) is vital for the
derivation of the velocity-velocity commutator from the implicit definition. However,
it has not been realized that in such a derivation of the velocity-velocity commutator,
one actually works in a frame work where (1) and (2) are equivalent [4, 5]. ;

3. On the integral equation for the velocity operator

Consider the direct definition (1) and expand the operator g(x)~' about the ground
state expectation value (g of the operator o(x). Defining 0(%) = o(x)—{¢> we have
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By taking the Fourier ‘transform we have

o 2 .. i B o AT e e T
20,(k) = o J k)~ D% Z {0 )T (k~q1)+T (k= 4,)6(d,)}
q1#0
1 - - oA~ - - ~ - - -
+ @3 Z Z {é(%)@(éh)-]u(k,“%“42)+Ju(k‘41—‘12)@(41)@(‘12)}‘
41#0 g2#0
This leads to the integral equation,
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which is analogous to the integral equation-obtained by Yamasaki et al. [6].

It may be remarked that the operator within the summation sign over ¢ in the above
equation is in the symmetrized form. If this symmetrization is not done the velocity opertor
is defined as in Ref. [7] viz. by an integral equation of the form '
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then the velocity operator [EM(I}’)]L obtained from Landau’s definition (1) and the operator
obtained from (9) are related by
5k) = 3,00 +{ X -pui(R), (10)
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which in the configuration space becomes
w(X) = 8R) [ ®)Ked]

The above relation is easily obtained by ‘using non-relativistic current algebra in
the momentum space:

[6(P), ()] = 0
[0), T(@] = — 1,85+
7). T D] = =pJ, G+ )+ (5 +3).
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Since definition (1) and (2) have been proved to be equivalent it follows that [EH(I;)]L

has no singular behaviour. This establishes that :5(1—5) as defined by (9) is singular since

it involves the term Y. p,. This is in agreement with the observation made by Yamasaki
p

et al. [6].

4. A comment on the velocity-velocity commutator

Fanelli and Struzynski [3] have made an attempt to show that the velocity-velocity
commutator is zero

[v.3), 0,(1)] = ©. (1)

In this derivation use has been made of the inverse of the quantum field operators ypt
and (y')~! which do not exist. A later attempt of Yee [4] using the implicit definition does
not subscribe to this result. Kobe and Coomer [5] obtained the result (11) by insisting on
the additional requirement that ¥ (x) should be a vector function which satisfies the con-
dition V x ¥ = 0 in which case the velocity operator has the following functional derivative
representation:

0,(X) = V,(x)—ifh =1,2,3). (12)

0x, 59(55)
“Yamasaki et al. [6, 7] obtained the result that (11) is valid for a many-boson system while
it is not true for a many fermion system. However the approach based on non-relativistic
«current algebra does not support this point of view. Tt may be pointed out that an entirely
independent approach by Varga and Eckstein [8] also differs from (11).

It should, however, be emphasised that no attempt has been made to evaluate
'_'[v,l(}), v,(3)] using definition (1) and the non-relativistic current algebra. In view of
the divergent results pointed out here, it is worthwhile to persue this problem from this
point of view as well.

In this approach the commutator involving the inverse mass density operator plays
a significant role [9].
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.On using this along with (1) we obtain.

do,(X) v, (X)
0%, 0x,

e iace—;){ } o). (14

This is in agreement with the observation of Varga and Eckstein [8]. Equation ( 12) can
‘be improved from a different observation as well. From equation (5) it follows that

oGP~ ®+ o Xu()eR) = 20,0)- (15)
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The most general form of the velocity operator as obtained from this is

= 0
v (X) s F(Q)—l— =
“ dx, do(x)
F(0) being a suitably chosen functional of o(x). This observation is in agreement with
that of Kobe and Commer [5].

5. Conclusion
L 3

An analysis of the definitions of the velocity operator as given by Landau has been
made. It is established that these definitions are equivalent subject to the condition (6).
An integral equation postulated by Yamasaki et al. [6] is also derived from these definitions.
However, the velocity-velocity commutator is found to be different from zero in contra-
diction with some of the results obtained earlier [3, 6].

The author wishes to thank Professor G. R. Damodaran and Professor D. K. P. Vara-
darajan for encouragement.

REFERENCES

{11 L. J. Landau, J. Phys. USSR 5, 71 (1941).

[2] R. F. Dashen, D. H. Sharp, Phys. Rev. 165, 1857 (1968).

[3] R. Fanelli, R. E. Struzynski, Phys. Rev. 173, 248 (1968).

[4]1 D. D. H. Yee, Phys. Rev. 184, 196 (1969).

[5] D. H. Kobe, G. C. Coomer, Phys. Rev. A7, 1312 (1973).

[6] S. Yamasaki, T. Kebukawa, S. Sunakwa, Prog. Theor. Phys. 53, 1243 (1975).
[7} S. Yamasaki, T. Kebukawa, S. Sunakawa, Prog. Theor. Phys. 50, 1490 (1973).
[8] B. B. Varga, S. G. Eckstein, J. Low. Temp. Phys. 4, 563 (1971).

[°1 R. Vasudevan, R. Sridhar, N. R, Ranganathan, Phys. Lett. 29A, 138 (1969).



