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WEIGHT AND STEP OPERATORS FOR FINITE GROUPS*
By T. LuLex
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Weight and step operators for finite groups with properties analogous to those of Lie
group infinitesimal operators are defined. A method for the determination of such operators
as eigenvectors of the commutator eigenvalue problem in the group algebra is given. General
results are demonstrated in the case of the point group D;.

1. Introduction

In order to evaluate various quantities of the representation theory of finite groups
(representation matrices, Clebsch-Gordan coefficients, reduction coefficients etc.) the
projection operators [1] are used. The analytic formulae for these operators depend in
general not only on properties of a given group G, but also on the choice of bases of
irreducible representations, and hence allow for large arbitrariness [2] which makes deriving
any general relation between various coefficients of the theory in a compact form difficult.

On the other hand, in the representation theory of Lie groups, the canonical basis .of
infinitesimal operators algebra consisting of weight and step operators is in common use
[3]. E. g. for the SU(2) group we have the well known relations

Flimy = mijmy,  j*|jm) = [(iFm) (j2m+ D] jm+1), M

which determine a basis for any irreducible representation DY of this group with an
accuracy of one phase factor for the whole (2j+ 1)-dimensional carrier space. Such rela-
tions replace in an efficient and elegant way the projection operators of finite groups, and
enable one to derive analytic expressions and recurrence formulas for appropriate coupling
coefficients of the theory [1, 3].

Gamba [4] has shown that a finite group G can be associated in a natural way . with
a Lie algebra through a definition of the commutator product

lg,8'] = ge'~g's, g g'eG 2
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in an ordinary associative group algebra. The aim of the present paper is to develope
further this idea, namely by application of generators of the Lie algebra to the determina-
tion of matrices of irreducible representations of the associated finite group. We also
propose a method for the determination of these generators in terms of elements of the
group G, and demonstrate it in the case of the point group Dj.

2. Algebras and bases for a finite group

An ordinary group algebra 4(G) over a finite group G (the Frobenius algebra) with the
‘group multiplication is a semisimple associative algebra, and its constituent simple algebras
A(G) can be labelled by irreducible representations I' of the group G [5]

A(G) = XFJ ®A4(6), 3)

where @ denotes the direct sum. Each A(G) is a simple matrix algebra, i. e. the algebra of
all [I']x [I'} matrices ([I'] denotes the dimension of I'). Elements

s = [Fl

poyt T ;(G) Dgl’;)(g)*gv (4)

geG

where D‘y?(g) are the matrix elements of the irreducible representation I', and n(G) the
aumber of elements in G, form a basis of the algebra A(G) [I, 5]. Substituting the last
factor g in this formula by the corresponding operator of any representation T' we obtain
for y = ¢’ usual operators projecting any vector of a carrier space of 7' into a subspace of
vectors having the same transformational properties as the basis vector |I'y) of the irredduc-
ible representation I', and for y # 7’ the transition operators which map |[I'y). into |Ty">
[1]. Therefore, one can choose a basis for the Frobenius algebra A(G) consisting of
g, = Y [I'] idempotents S, and ¢, = Y, (II'1*—1) nilpotents S2,(y # 7).
r

P=7
r

The maximal Abelian subalgebra of the Frobenius algebra A(G) is the character
algebra A,(G), which can be spanned over a basis of idempotents

» Ir]
X(T)= S(I:? — ol (T)KK, 5
=g ) )
v K

where K is the sum over a class of mutually conjugate elements of the group G, and
y¥(K) is the character of any element of the class K in'I".

Replacing the group multiplication gg’ in the Frobenius algebra A(G) by the commu-
tator product [g, g’] defined by Eq. (2) we obtain a Lie algebra B(G) [4], referred to in the
following as the commutator algebra. Since the Sg‘l’vl satisfy the commutation relations of
generators of the unitary group U([I']) [3], i.e.

[ng) S}(’r}) '] = 51"1"'(5%‘/2'85’1;’)"*?2*5)'1’?2551;)—’)’2')’ (6)

1=y2° P’y
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then we have

B(G) = ; @BHG), (7
B/(G) = BYG®)@B(G), )
with subalgebras Br(G), B{(G), and B{*X(G) isomorphic with U([I']), SU([I']), and U(1),

respectively.
The character algebra 4,(G) after introducing the commutator product (2) becomes

a nilpotent algebra B,(G), and
B(G) = ¥, ®BF(G). ©)
r

Evidently, the basis for each one-dimensional algebra B{*(G) is the element X given
by Eq. (5).

Subtracting the nilpotent subalgebra B,(G) from the commutator algebra B(G) we
obtain a semisimple algebra

BY(G) = 3, @B{(6) (10)

which includes all consequences of non-commutivity of multiplication in the group G.
For each simple subalgebra B{X(G) we can choose the canonical Cartan-Wey! basis [3}]
consisting of weight operators H; and step operators E, which satisfy standard commuta-
tion relations

.[Hi’ Hj] =0 (G,j=1, 2:"'5[F]—1)’
[Hi’ Ea] -—-’AaiEa,
[E, Eg] = NyE,,p for f+# —a

[Eoza E—a] = Z aiHi, (11)
where o and o; are covariant and contravariant components of the root vector « labelling
the step operator E,; the corresponding metric tensor g;; as well as numbers N,z can be
determined according to the Wybourne monograph [3]. The basis functions |I'y> can be
labelled by means of the set of eigenvalues of weight operators Hy(I').

The Casimir operator
C(I) = Y, ¢"H(DH D)+ Y, E(NE_(I) (12)
i, a
commutes with each element of B(G). Since in each algebra Bj(G) only one independent
element, namely X, exhibits this property, we find that

C() = k(X" (13)

where x(I') is a number.
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We can therefore define a basis in the Frobenius algebra 4(G) consisting of operators
XD, H(I), and E,I) instead of S{7,.. In the case of non-Abelian groups, all operators
related to representations w1th [I'1 > 1 can be derived from the semisimple Lie algebra
B(l)(G)

3. Derivation of matrices of irreducible representations

Putting
X(r’) = fél‘l"'s HE(FI) = ﬁiarr', Ea(F,) = Evaarr', (14)

where 1 is the unit [I'] x [I'] matrix, H, ; and Ea are the matrices of weight and step elements
in the group SU([I'})), and writting down the elements X7, H(I'"), and E,(I"") in terms of
elements of the group G we get a complete set of linear equations for the matrix elements
olch D X(g). Hence if we know the weight, step, and character operators we are able to
determlne matrices of any irreducible representation I' of the group G.
Weight and step operators can be found as solutions of the commutator eigenvalue
problem [3}]

[F, Y] = oY, . (15)

where F is an arbitrary element of BY), and ¢ and Y is an eigenvalue (a number) and an
eigenvector (an element of BY), respectWely If we choose F in such a way that the cor-
responding secular equation has the maximum number of different roots g, then only
the root ¢ = 0 can be degenerated. Eigenvectors corresponding to ¢ = 0 and ¢ # 0 are
the weight and step operators, respectively.

If we look for solutions of the commutator secular equation within the whole algebra
B(G), we get, besides weight and step operators, the elements of the algebra B®(G) as
well. The latter belong obviously to the eigenvalue ¢ = 0. Since the solution is independent
of the choice of basis of the algebra B(G) we can use the basis consisting of the group
elements g € G. Putting

F=73% fg Y=3 38 (16)
geG geG
we obtain from (15)
Z(fgg’—l—fg'~lg)yg' = 0Vq amn
pe

Hence the weight and step operators are determined by a solution of the eigenvalue
problem for the n(G) x n(G) matrix F with elements

Fog =fog-1=Jy-10 ()
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4. An example: the group D,

The dihedral group Dj consists of 6 elements which we arrange in a sequence {E},
{Cs, C3''}, {uy,uy, u3}, where the Schoenflies notation is used, and curly brackets
indicate classes of conjugate elements. When we establish the group multiplication table by
Ciu; = u,.+1(mo;e 3), the matrix F determined by Eq. (18) has in this sequence the form

0 0 0 0 0)

0 0 B B By| Ad=fo,~fe
0 0 -B, -B, -B;| B, =.ﬁlz—ﬁ43
B, —B, 0 -4 A| B,=f,—f.
B, -B, A 0 -4 | B,=—-B-B,
l0 B, =B, —4 4 0

(19)

(=R ool e B o =)

This matrix has, for arbitrary 4, B;, at most two nonzero roots. Assuming e. g. F = C,
we get 94 = +i/3,and o = 0 is a four-fold root. We can choose basis elements of the
algebra B‘*Y(D;). (isomorphic with SU(2)) in a form

-1

H=——(C;—Cj!
2\/3( 3 3 )
2ni
Ei =} +otu,+ottu,), wo=¢3. (20)
These elements satisfy commutation rules
[H E,]=+E,, [E, E.]=2H (21)

identical with those for angular momentum operators j7, j*, used in Eq. (1). The Casimir
operator for the algebra B (D,) has the form

C(E) = H*+3 (E4E_+E_E,) = $ E—} (C;+C5 1) = § X®, (22)

where X® is the character operator for the two-dimensional irreducible representation
E of D;. The complete set of linear equations for matrices of this representation can be
written as

XD = %(E+C3+C3“1+u1+u2+u3) =0
X2 — %(E+C3+C;1——M1-u2“us) =0
X® = 3QE-C3-C5Y) =1

=37
e

Ey(E) = 4 (u, + 0¥ uy+0*lu;) = 1 (0, +i5,), (23)

H(E) = (C3-C3 =1%o,
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where 4, A, are Mulliken symbols for one-dimensional representations of Dj, and Os 53,
and o, are the Pauli matrices. The solution is given by the following matrices D*(g)
arranged in the same sequence as rows and columns of the matrix F of Eq. 19

(D)6 o)(o) Qo) e)(0s) oo

5. Final remarks and conclusions

We have shown in this paper that the concept of commutator product for elements
of a finite group opens the way, in agreement with the predictions of Gamba {4}, to an
application of the methods characteristic of representation theory of Lie groups in the cor-
responding theory for the finite group. Though finite groups do not have infinitesimal
operators, they can be endowed with weight, step, and Casimir operators. The latter play
essentially the same role in the representation theory as the former for the case of Lie
groups, i. e. they define the basis functions for irreducible representations of a finite group
in analogy with formula (1). A specific feature of finite groups is that generators of appropri-
ate Lie group are associated with a particular representation I' (generators associated
with I  I' are nilpotent in the representation I'). The determination of generators of
Lie groups for a finite group consists in solving the eigenvalue problem for the matrix
F given by Eq. (18). ‘
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