Vol. A52 (1977) ACTA PHYSICA POLONICA No 1

»

SURFACE STATES IN ONE-DIMENSIONAL MODEL OF
A CRYSTAL WITH AN EXTERNAL FIELD
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The approximate formula for the number of surface states has been obtained for the
model of a one-dimensional semi-infinite crystal with an arbitrary potential at the boundary
and the Kronig-Penney-type potential inside the crystal.

1. Introduction

It is well-known from the theory of surface states [1], that in the crystal model in
which the rectangular barrier is taken as a boundary potential, at least one surface state
is obtained in each forbidden zone of the crystal electron spectrum. Flores, Louis and
Rubio [2] studied the influence of the potential shape in the intermediate region between
the undeformed crystal and the vacuum in the case of the linear batrier and afterwards
Garcia and Solana [3], for the case of the image potential barrier. The first result of these
investigations was the general conclusion that the number of surface states depends on
the potential barrier shape. In the case of the linear barrier of intermediate region width /,
it has been found that the seconc surface state appears in the forbidden zone of a semi-

conductor when / = 3A. In the work of Garcia [3], the surface states spectrum dependence
2

Ce
on the value of the parameter C in the image potential V(x) = — — was analyzed.
x

With physically reasonable fixed values of the lattice constant @ and of the potential
barrier depth V,, it has been shown that an increase in C is accompanied by an increasing
number of surface states, first in the energy gap nearest to the vacuum level and next in the
second gap. Similarly as in the work of Flores [2], the authors get their results numerically,
using the Bessel function as an approximation of the Whittaker function which is a solution
of the Schrodinger equation with the Coulomb potential.
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Kolat and Barto§ [4] obtained further results in the semi-infinite one-dimensional

; 2n
crystal model with a sinusoidal potential of 2|V cos o {(x—X,) type inside, and image

potential + ¥V, outside the crystal. For the values (a.u)a = =n, |V] = 0.02, C = 0.5

.x"—xl
and various values of ¥V, the most interesting result of numerical calculations was obtained
s :
g T ) .
for V, tending to <~) + V|, where it has been found that the surface states number
a

tends to infinity.

2. The model

The subject of the present work is an analytic investigation of the dependence between
the surface potential shape, particularly its asymptotics, and the existence and number
of surface states in the one-dimensional model of the semi-infinite crystal.

We consider the Schrodinger equation

2 d2
[— e +V(x)] u(x, E) = Eu(x,E), 0<x<
m dx

with the potential V(x) tending to Vo+Fx as x — oo (Fig. 1). The potential describes,
for example, the field ionization case. It was analyzed by SteSlicka [5] for V(x) exactly
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Fig. 1. The potential energy shape with the classical turning point xo(E)

equal to ¥V, +Fx; If we use the Kronig-Penney potential for the interior of the crystal
then the surface states energy value equation has the form
Ka® _ af¥E)

tg k =
ka ctg ka+ 7 P

af(E), (1)

where P is'the power of the Dirac delta describing the potential well, @ is the lattice constant
and f(E) is the logarithmic derivative of u(x, E) for x = 0. Solutions of this equation are
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the surface states, suibject to
P
J(E) < — 25’ 2)
a

which is the “‘existence condition” obtained identically as the Tamm condition for the
rectangular barrier model [1].

3. Calculations

It is known from the theory of ordinary differential equations [6] that the solution
u(x) has an oscillatory character for E— V(x) > 0. In the case of the Schrodinger equation
with the potential as in Fig. 1 the function E— V(x) is negative for x > xy(E) and positive
for x < xo(E). So, in the last case the solution is oscillating. The zeros of u(x) are placed
only in the region 0 <{ x < xo(E). The number of zeros is given by the approximate
formula [6]

x0(E)

ES
2

1 2 B
NGxo) & — f dx{——éz} [E—V(x)]}, (3)

]

and it is of course a function of energy E.

In can be seen from equation (1) that knowledge of the f(E) function singuliarities,
i.e. of 1u(0, E) zeros, plays an essential role in this problem. On the other hand, it is easy
to find the number of zeros in the region 0 < E < E, is equal to the number of zeros of
u(x, E) in the region 0 < x < co. It is also possible to show, that f(E) has always the positive
derivative and it may be written as the tangent of a continuous monotonic function. As
the “density” of f(E) singularities is determined by (3), we represent our function by

xo(E) o ) 5
fE) ~ tg[ j dx {-h—z [E—V(x)]} +A].

We can estimate the constant A requiring that

2m B
B = 1u8) = = 33 o=

as E tends to zero from above, when fi(E) is the exact function f(E) for the rectangular
barrier model.
Finally, the function f(E) is equal to

V-YE)

2mV, It 2m\* ,
AE) ~ [%-“] tg{(h—n;> f dx[E— V()] - %} %)
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The graphs of the left and right hand sides of (1) are sketched in Fig. 2, and it was easy
to assume that the maximal values of the right side of (1) have the common value P/4
independently of a. The method used above is closely connected with the WKB method.
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Fig. 2. The trace of equation (1). The solid and the dotted lines correspond to the left and right hand sides
respectively. Here P = 3n

4. Results

Now we can represent the expression for the surface states number in the succesive
n-th energy gap. We should notice that each singularity of f{E) produces in general two
roots of (1) (rarely one root). Yet is it easy to prove that condition (2) is fulfilled only
for the right side of (1) having the positive derivative. So, each singularity of f(E) gives
in general one surface state if only E is taken from the energy gap.

Let EY denote the lower limit of the n-th energy gap,

O h? ar\?
" om\a

and let

where k, is the n-th positive root of the equation

k*a*> P

ka ctg k =,
acga+P 7

Then, the number of surface states in the s-th forbidden zone is approximately

l, ~ 1+ N(E,)— N(EJ), )
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where N(E) = N(xo(E)) is given by (3). The number 1 appearing in the above formula
is introduced for the case when f(E) is continuous, and then the cotangent singularity
gives the root of (1).

Let us examine the influence of asymptotics of the potential on the existence and
number of surface states. For F = 0, f(E) has a finite namber of singularities if N(Vo) has
a finite value i.e. when the integral

[ ax[vo- vl ©)

is finite. In the opposite case, including the image potential case, the divergence of (6)
gives an infinite number of singularities of f(E) with the accumulation point V,. Now,
if the parameters ¢ and P are such that V), is found inside the energy gap, we get an infinite
number of surface state energy levels.

For V(x) = Vo+Fx+Vi(x), Vi(x) = 0 as x - co, the formula (3)

\

xo(E)

1 /2m\* ,
NE) ~ — (%}) J dx[E—Vy—Fx—V,()]*
0

exhibits that for F'# 0, N(E) is finite only if x,(E) exist. So, if F > 0, then I, estimate the
number of “real” surface states, and in the opposite case (F < 0) — “virtual” surface
states considered by Modinos [7], which does not exist in a static case due to tunneling.
For small F the problem reduces to the previous one (F = 0). For large F > 0 we have

i 1
Xo(E) = ‘1‘;: [E-V,~— V1(xo)] ~ F [E—V,— VI(O)]

and

N(xo(E)) > 0 when F— co.

5. Final remarks

To conclude, we have got in analytical way the general expression for the number of
surface states in the one-dimensional semi-infinite crystal model with the Kronig-Penney
potential inside the crystal and an arbitrary monotonic one outside. We have generalized
the results [2-4] presented at the beginning, for the arbitrary boundary potential. The
presented expresions are not valid for small energies E, but the last case is well described
by the rectangular barrier model. .

In one physically significant case of image-force potential

e2

Vo) =Yoo 1o

Xo > 0
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the exact number of zeros of the solution u(x, E) of the Schrédinger equation may be given,
but only in the region —x, < x < co [8} It is

NGE) = int| me* E
= 1N — .
32h%(Vy—E)
However, this formula can be used as a good approximation for the calculation of the
number of surface states (5).

We think that the use of a potential other than the Kronig-Penney does not introduce
any substantial change in the formulas.

The author would like to thank Professor K. F. Wojciechowski for constant encour-
agement and advice and dr M. Steélicka for the essential remarks.
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