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The relaxation time 7 necessary fcr the equilibration of translational energy in perpen-
31 m \%
dicular directions for the Rigid Spheres Modelisshowntobez = — — [ — = _ 2, where 7,
8 no? \ #kT :

m. 0, k, T denote the number density, the molecular mass and diameter, the Boltzmann constant,
and temperature, respectively. The average number of collisions during the relaxation time
is Z = 3/4. This quantity, which is shown to be a good measure for self-relaxation of transla-
tional energy, can be greater for more complicated models; especially Z can be increased
even nearly by a factor of two if a simultaneous process of quick rotational relaxation occurs.

1. Introduction

In some transport processes in binary mixtures of dilute gases, e.g. the propagation
of strong shock waves, four temperatures are introduced (two different temperatures in
perpendicular directions for both of the components separately) [1-3]; in this case the
analysis of the shock wave structure is more accurate. The process of equilibration of
translational energy is so quick that the width of a region in which it takes place is equal
toabout two mean free paths [4].

The relaxation process of translational equilibration has been already analyzed very
extensively, however, only for the equilibration of two components (also electrically
charged components [5]) having two temperatures [6-8]. Very simple equations for the
relaxation time have been already derived [9, 10].

However, a direct analysis of the process of relaxation of translational kinetic energy
in"perpendicular directions, which can give an additional explanation for the phenomena
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discussed [1-4], has not so far been performed even for a one compounent system. The
aim of this paper is to perform such an analysis, to determine the relaxation time, and to
show how many collisions are necessary for the occurrence pf translational equilibration.

2. Introductory definitions

We define the relaxation time 7 by the formula

\ d{E 1
aEy dt”> = - —<E)-1E)), (M

where ¢ is the time, E; and E, denote the translational kinetic energies in the perpendicular
directions discussed and the brackets are used for the averaging operations described in Sec-
tion 4. It is also possible to write such an equation for temperatures instead of average
energies. However, because it is sufficient to carry out our further derivations for the average
energies (which always exist in contrast to various temperatures) we do not discuss temper-
atures here.

In Eq. (1) the relaxation time does not depend on the values of energies. That is
why in order to simplify calculations it is convenient to analyze this equation for the
condition in which

(E o> =0, )

where the index 0 is used to denote this condition. We would like to emphasize that from
the physical point of view, Eq. (2) can be treated as a very rough approximation because
even at the very beginning of the relaxation process discussed, E; can be much smaller
than Ej, but it is never equal to zero. This mathematical condition (2) which can be intro-
duced because of the convenient mathematical property of Eq. (1) will be wsed in further
calculations.

From Egs. (1) and (2) we obtain the expression for the relaxation time

__ <EDoy
dE ey
dt

®

We define the collision number Z as the number of collisions during the relaxation
time. Then we have

Z=1—, .
n

where # is the number density and N/n is the average number of collisions of any one .
molecule per unit time. In order to calculate 7 and Z we first discuss the collision equa-
tions.
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3. Collision equations

Heré, we shall analyze collisions between molecules which are rigid lspheres character-
ized by molecular mass m and the molecular diameter a. Figure 1 shows a collision between
such molecules. The spheres with the centres O, and O, collide at the point P. During

a collision the velocities of both spheres change from ¢, and ¢, to ¢; and ¢}, respectively.’
For the spheres which collide as smooth and elastic bodies we have [11]

Cll = (:1+ll * (62—(:1)
ey ==l (c;—cy), ' (5)
where /is a unit vector in the direction of the line from the centre of molecule 1 to that of

molecule 2. For calculating changes in kinetic translational energies of molecules it is
convenient to introduce the relative velocities

8 = €1—¢C
7

g =ci—c;. (6)
Then, the collision equation can be simply written as
g =g-2l-g )

According to the condition (2) the molecules move in one direction before the collision.
This direction given by the unit vector k associated with the line PC is denoted by the
index ||.
From Eq. (7) after taking into consideration that
gy =kk-g=g
g, =kk-g ®)

we obtain a collision equation for this direction

g = kk-(1-2U) g, ©)
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where 1 is the unit tensor. From Fig. 1 it can be. easily seen that
g=g =PC g, =0
g =PE; g, =PB; g, =PD
—1l-g=PA=1%(CE), (10)
and
k1= cosp. an
Thus Eq. (9) can be simply written as
g = —gcos2y. (12)

This collision equation will be used in the final calculations given in the next section.

4. Collision frequency, relaxation time and collision number

In order to use Eq. (3) we write

(o> = | EPofioe -
where f(c) is a distribution function. For the rate of change of the average energy we write
.
‘&?J)Q = .[ J\(E’H_(Eu)o)%N(g, y)dgdy, (14)
—w 0

where 1 N(g, ) dgdy is the number of collisions for which the relative velocity of mole-
cules g and the angle v lie in the ranges g, dg and v, dy, respectively. The energies given
in Egs. (13) and (14) are

Epo = 3 mc?, E|l| = %m(c;l)z. (15)

After taking into account that the energy differences do not depend on the frame of refer-
ence and by using Eq. (12) we have h

! m ’ m ! m Y
E) —(En)o = 2 [(011)2_62] = 2 [(g1|)2—g2] = 3 32(C052 2yp—1). (16)
In order to perform further calculation, it is necessary to make certain assumptions

' about the distribution function. We assume it to be a Maxwellian one. Then for condi-
tion (2) we have the following Maxwellian distribution in the direction || [12]

% 2
fleyde = n <2:;T> exp (— ZcCT) de, an
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where k denotes the Boltzmann constant and T temperature. For the sake of simplicity
the indices || are omitted here and in some further expressions. Then from integrating of
Eqgs. (13) and (15) we get simply

<(E||)o> = } nkT. (18)

To perform the calculations connected with the collision frequency we have to take
into account that [13]

+ o0
N(g, y)dgdy = | [N(G, g, y)dgdy]dG, (19)
where .
G = 1(ci+ey) (20)
and

N(Ga 8 1/'}) degd'/) = N(cla €y w) d01 dc2 d'P
= fi(e))f2(e2) g 2na? sin y cosyde; de, dy, 21

where the distribution functions of the colliding molecules 1 and 2 are Maxwellian as in
Eq. (17). From Egs. (19), (21), and (17) after taking into consideration that for the transfor-
mations (6) and (20) the Jacobian is equal to unity we get

Nee, gy = 3 w20 () goxp (= &) sin 20dgd 22)
g w)dgdy = 4 ) goxw (= g ) sin 2vdgdy.

This quantity is necessary for the final integration of Eq. (14) and it also permits one to
calculate N from Eq. (4) because

ki3

=2 J‘ fN(g, pdgdy = 2n202< kT> (23)

m

We have multiplied this integral by two because in the integration of Eq. (22) we have the
odd function of g which here gives the same amount of collisions for the negative and
positive relative velocities. It should be emphasized that the quantity N calculated in
Eq. (23) is connected with the artificial state in which the condition described by Eq. (2)
is fulfilled and that N is not equal to the quantity N,, usually discussed (cf. Eq. (5.21,1)
from Ref. [13)).

The relaxation time can be calculated from Eq. (3), after taking into consideration
Egs. (18) and (14). The integration of Eq. (14) can be easily performed when using Eqgs. (16)
and (22). Then we get for the relaxation time

1/ m\?
()

oo[w
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Then from Egs. (4), (23), and (24) we obtain for the collision number

z= 25)

NI

Thus we see that the relaxation time and collision number for the process of equilibration
of kinetic translational energy in the perpendicular directions for the molecules described
by the model of rigid elastic smooth spheres are rather small quantities.

5. Discussion

We see that Z = 3/4is a very small quantity because foi the cther relaxation processes
it is greater. The collision number for vibrational relaxation Z,;, can be of an order of
magnitude 103-10* and for rotational relaxation (except H, at low temperatures where
Z,., can be equal to 200) Z,, is in general larger than 2 and its order of magnitude is
very often 10* [4, 6]. :

It is interesting to compare the collision numbers of various relaxation processes with
the collision number of the most common processes which appear whenever any temper-
ature fluctuation in the system exist, namely with the self-relaxation of translational energy.
The equilibration of translational kinetic energy in the perpendicular direction analyzed
here is an example of such a self-relaxation. But when discussing self-relaxation it is
necessary to consider also the other process, namely the cquilibration of two different
translational kinetic energies associated with two gaseous components of a binary mixture,
and then to seek for the limiting value of the collision number in the case in which the
molecular parameters of both the components are not to be distinguished. It can be
easily calculated from the formula given for rigid spheres by Malkin [10] that the col-
lision number for this self-relaxation process is equal to 3/4 too. Thus the collision number
Z = 3/4 characterizes very well the self-relaxation of rigid spheres for both processes
mentioned, i. e. equilibration of energy in the perpendicular directions and equilibration
of energy between molecules which have different kinetic energies. The last quantity for
molecules which interact with a Maxwellian potential is greater and from the formula
of Mc Cormack and Williams [9] it can be calculated to equal 1.

It should be emphasized that all derivations has been performed here for the artificial
state (discussed under Eq. (2)) in which the molecules move in one direction. The collision
frequency calculated for this artificial state does not correspond to the commonly used
quantity describing the motion in three dimentions. It can be seen that of these two quanti-
ties the former (cf. Eq. (23)) is not three times but two times smaller than the latter (cf.
Eq. (5.21, 1) from Ref. [13]). Otherwise the factor 3/8 in the expression for relaxation
time (cf. Eq. (24)) would be replaced by 1/4, however, even then the collision number Z
‘would remain 3/4. The simple derivations for the mentioned state were performed in
order to avoid possible errors connected with an introduction of different probabilistic
mmeasures in calculations of the collision frequency and the rate of change of average
‘energy in one direction (cf. Egs. (23) and (14)).
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It is interesting to see if the rotational relaxation, for which Z,, is not large, can
affect the value of translational energy self-relaxation. We suppose that for the simplest
models available such an effect is larger for the model of nearly spherical rotating mole-
cules [14] than for the Bryan-Pidduck model of rough spheres. In the collision equations
for both models an additional quantity j = I/r? (where [ is the moment of inertia and r,
which is the molecular radius, i. e. 4o, in the model of rough spheres, is smaller than ¢
in the modified model [15, 16] and it is even smaller than the radius of gyration in the
model of nearly spherical rotating molecules) can be introduced. It plays a similar role for
rotation as the molecular mass does for translation [14, 16] and it is also discussed as the
effective mass [17]. The influence of j on Z can be simply evaluated from the collision
equations for the initial state in which the colliding molecules do not rotate before the
collision. Then from Eq. (19) from Ref. [14] it can be seen that the change of energy in
such a collision is [m;(m~* +j)]? times smaller than that in Eq. (16). As the ranges of
mjjare 0 < mjfj < 0.4, we see that for mjj = 0.4 (for which Z_,, = 4) the value of (1 +myj)=2
is close to 1/2. Then Z would be about twice as large as 3/4. We do not expect such an effect
for the model of rough spheres because in the collision equation j appears there only in
an additional term describing the exchange of energy (connected with roughness) in the
direction perpendicular to the unit vector /. But we think that the evaluations for the
former model are more important because the model of nearly spherical rotating molecules
provides more reascnable results for the transport coefficient than that of the rough
spheres.

Just/to summarize, we see that the collision number of the relaxation of translational
energy in the perpedicular directions for a gas composed of rigid spheres is Z = 3/4.
‘This quantity is a good measure of self-relaxation of translational energy for one compo-
nent systems. It can be larger for other models. It can be even two times larger in a system
in which a quick process of rotational relaxation occurs. But in general the discussed
translational relaxation is a very quick process always quicker than the process of transla-
tional relaxation between two gases which have different temperatures and also faster
than the process of rotational relaxation.
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