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The Green function method is adopted to the recently developed dynamical model of
hydrogen bond. The lowering in the energy of the hydrogen bond, resulting from the attrac-
tive interaction of the non-bonding electrons, located at opposite sides of hydrogen bridge
via chemical bond valence electrons and proton stretching vibration is obtained. The result is
similar to that of Witkowski, but allows for the unique definition of the zero of energy and
shows additional stabilization of hydrogen bond via non-bonding electron’s chemical poten-
tial changes during the formation of this bond.

1. Introduction

In the two subsequent papers [, 2] the dynamical model of a hydrogen bond was
presented, in which a special attention was paid to the physical nature of this phenomenon
and not to numbers. Witkowski [1] has shown that the dynamical interaction between
non-bonding and valence electrons in the molecular fragment X-H...Y leads to the
attraction between the non-bonding‘ electrons located on the X and Y atoms, and owing
to the simultaneous screening of the Coulomb repulsion by the proton, it results in the
lowering of energy of the total system. We can say, therefore, that such interaction is,
at least, partly responsible for the stabilization of a hydrogen bond, and play a very impor-
tant role in hydrogen bonds, which are not very strong. Such hydrogen bonds are the most
interesting ones, as they are present in all biologically active macromolecules. In that
paper a special role of the almost spherical symmetry of non-bonding electrons excited
states was also pointed out. In the subsequent paper of the present author [2] a main
attention was paid to the role of the X-H bond stretching vibration. It was shown that the
polarization of the non-bonding electrons by the vibrating proton leads also to the attrac-
tion between non-bonding electrons, and, therefore, the hydrogen bond binding energy
possesses part of a vibrational origin. There was the paper of Anderson and Lippincott
[3] in which it was pointed out, for the first time, that the hydrogen bond phenomenon
cannot be fully understood on the basis of pure electronic interactions only. In paper [2]
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also the explanation of the great enchancement of the infrared absorption intensity in the
region of the X-H stretching vibration, as well as shifting of the gravity centre of this
absorption toward lower energies, was presented. Also the term responsible for the unusual
change in the total infrared absorption intensity after deuteration, arises in a natural way
from the dynamical model of the hydrogen bond.

The aim of this paper is to present the Green function application to the recently
formuilated model: It is shown that this method leads to a very similar results, however,
it allows for the unique definition of the zero energy in a very simple form, and shows
an additional stabilization of the hydrogen bond via change in the non-bonding electron
chemical potential during the formation of the hydrogen bond. For simplicity of notations
only the case of symmetrical hydrogen bond will be investigated.

. 2. Application of the Green function method

Let us assume, for simplicity, that the hydrogen bond is symmetrical. Witkowski [1]
has shown that the assymetry of hydrogen bond play a very important role in the stabiliza-
tion of this bond and in the existence of permanent dipole moment. However, for the
ground state energy, the assymetry leads only to a redefinition of the quantity 4, which
determines this energy. As we are interested only in the ground state energy, we can assume
that the hydrogen bond is symmetriéal, as equations resulting in this case are much simpler,
and only replace, in the final expression, 4 for (42+73)'/? (notations from [1] are used
here). In such a case we can drop in the Hamiltonian (25) of [1] all terms which are
expressed by the f, operators, as the ground state energy belongs, in the case of symmet-
rical hydrogen bond (1, = 0), to the Hilbert subspace spaned on S; operators only.
Therefore, the Hamiltonian of the hydrogen bond can be written in the following form [1, 2].

H = Z;@—k(al:rak‘l‘cl:rck)"' k; vk, kl)alj—cl:cklakp (1)
k Sf1

where &, = &,— U, &, being the energy of the k-th excited state of non-bonding electrons,
u is the chemical potential for these electrons, and a; , ay; cp , ¢, are the creation, annihila-
tion operators of the non-bonding electrons located on the opposite sides of the hydrogen
bond. According to [2], the matrix element V(k, k,) is given by

Vil k) = 2le1kl o Vi "o @
VT T (8~ 6, )Z—w (u—8,) ~w?

w is the X-H stretching vibration frequency, w, is the excitation energy. of the n-th excited
state of the chemical bond X~ H, summation goes over all valence electron’s excited state,
and the matrix elements are expressed as follows:

h 1/2
Vg = @ (2Mw> <k|xA|kl>xA,xB (32)

1
i . Vi = m <0IﬁA‘ln>‘x3<klpA|k1>xA' (3b)
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Here o is the non-bonding électrons — proton vibration interaction constant, x,, p,,
Xp, pp denote the coordinates and momenta of non-bonding; valence electrons, respectively.
For o < (;~&},) < w, the interaction (2) is an attractive one. As for the ground state
calculation we will need matrix elements V(k, 0) the above mentioned inequality will be
satisfied. The chemical potential u in (1) should be calculated from the requirement of
the constant number of non-bonding electrons, i. e. from the equation:

;<aljak> = ;<Ck+ck> =1, 4

the averaging being performed over the ground state of the system.
Let us now introduce the following Green’s functions [4]:

GO = —i0(t) ([a(0), ai (0)].),
Gt = —i6) e, & (04,
GOt = —i0(0) [ef WelDa), aif (014,
GO = —i0() <[ (Vael®), e (0)]1). (5)

The Fourier transforms of these functions satisfy the following set of equations of motion:

(2-60GQ) = 2m)™ "+ X, V(k, k)Gi(Q), (6a)
Q=66 Q) = 2m)™ '+ Y V(k, k)G (), (6b)

(Q=28,,~ EIGEAR) = @n) 64, n0+ Y. Viky, D) Ked (L= cifie)ams af a
1
— Y Vikl) Kag,ar,cf eay; ag Do+ Y.V, k) <<al+cl+ck1ak1ak; a; Yo (60)
] 1
(Q—28,,— EIGEAR) = 2m) "o, i+ ¥ V(ky, 1)
!

X <<an(1 —al;:ah)alcl; ck+>>9"' Zl: vk, I) «cl:cklaljalcl; Cl:))ﬂ

+ V0B el 0,5 6 Do (6d)

Here we have put
K4; Bo = (—0() <[A®), BO)]+D)as (72)
nd = afay, mo =<, (7o)

and (...) Q means the Fourier transformation with respect to time.
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Now we cut the infinite chain of motion”s equations by the following approximation
of the higher order Green’s functions:

e (I=cfaean al o = (1=n))GENQ), (82)
Cas i aars af Yo = nDGE(Q), (8b)
<<a;cl+ck1ak1ak; ag Do = Bllel(ca)(Q)a (8¢c)

By, = <al+cl+ck1ak1>' (8d)

Such an approximation is equivalent to inclusion of correlations between electron pairs
only, and is similar to that in the BCS theory of superconductivity [4]. In that theory it
is assymptotically correct. Of course, such a sitnation does not appear in our problem.
Tt introduces some error to the ground state energy of the hydrogen bond, but we believe
that electron pair correlations are the most important, and that this type of aproximation
allows us to get the main part of the ground state energy. We will see below, that it leads
to a similar result as that obtained by Witkowski [1] by a totally different method. A similar
approximation must be done for Green’s functions appearing in Eq. (6d). As we are
concerned with the symmetrical hydrogen bond, we have n{® = n{”, and also G{"(Q)
= GNQ), GENQ) = GE™(Q). Therefore, we can neglect the labels @, ¢ as both types
of Green’s functions satisfy the same equation

Q- 231:1 i gk)Gkkl(Q) = (2n)~ 15kkﬁkv+(1 ”251«1),

Zl Viky, DGu(Q)+ Z:, V(L, k)By 1, G(L). €)

Equation (9) is formally similar to the equation appering in the Zuburev paper [4], of
course its physical meaning is here different.
Let us put now

By, = 44, Gy Q) = g4, (10)

.

where the quantities 4, satisfy the equation

— 1-2nm, .
28, + 4, =0, €8))
ki
with
4, = Zl: Viks, DAy, (12)
then from Egs. (6a) and (9), one gets
(-Q“gk)Gk(Q)"Akgk(Q) = (27'5)—1: (13a)

(Q+E9g( D)~ 4G () = 0. (13b)
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In. Eq. (13b) we droped the term with Ou;» @s in Eqs (6a, b) only term with k k; play
a role (V(k, k) = 0).
From Egs. (13) and (10) we obtain

1 Ek> 1 &, 1
G(Q) = —|[1+ =K fl—
&) 475[( u Q. )0-Q, +< Qk)9+szk]’ (14)
Gu(Q) = Ad(4n ) [(R-Q) ™' ~(Q+2) ], (15)
where
Q= (Er+4D)"2. (16)
Now, we have

where Ji(Q) is the spectral density of the function G () defined by

Q

~ (T + DI(R) = G(Q+1ie)—Gy(Q—ie); &= +0. (18)

Therefore, from Egs. (13a), (17) and (18) we get

_ & &
=4ll-—th——)ri{1- L), '
. 2( 2 2kT) 2( Q,) (19)
as & > kT. Similarly, we can get Ay from the spectral density of the function g(D).
One can write, according to Eq. (10)

(o (t)el e (Da, (D) = A, Aft—1) = 4, | T(@Qe2~g0, (20)
where T,(Q) satisfy the cquation identical to Eq. (18) with (@) and G(Q) replaced by
1.(Q) and 82), respectively. Therefore, we get

Al Al Al

A= | (QdQ = — Ln 2L o - L - 21
: f’() 29, 2kT 20, 1)

Now, one can easily verify that n, and 4, given by Egs. (19) and (21) satisfy Eq. (11).
Therefore, they form, together with Egs. (14) and (15), the selfconsistent solution of the
problem. From Egs. (12) and (16) results the following equation from which the quantities
A, should be determined:

V(k D4,

Fran b
1

4y = —%



894

This equation differs from the similar equation derived in the Witkowski paper (Eq. (49)
in [1]) only by a factor 2. For the cut off Hamiltonian [1] a similar equation to Eq. (50)
in [1] can be easily written. We note, that equation (22) is formally identical with the
integral equation which appears in the BCS theory. In the cut-off Hamiltonian [1] the
solutions 4 # 0 exist only for ¥ < 0, and from Eq. (2) one can see that V(k, 0), which
is present in equation determining the 4, parameter for the ground state, is indeed usually
negative.

3. Ground state energy

Now we are in position to calculate the expression for the ground state energy of
our model hydrogen bond. From Eq. (1) we see, that

Ey = (H) = 2;?kﬁk+ ;V(k, DBy (23)

inserting Eqgs. (10), (19), (21), and (22) into Eq. (23) we get

i p A2
Eo = § éﬂk(l— Q—")—z = (24)
k ¥ k k
_ F2+ 0}
E, = E &~ E ~ o (25)
k k

Let us put §o = 0, i.e. the ground state energy before the formation of hydrogen bond
is taken as zero. In order to find &, we must first determine the chemical potential p.
Let us put &, > 4, This is reasonable, as 4, should have the order of magnitude of
the hydrogen bond energy, and &0 is one of the excitation energies of non-bonding
electrons. Before the formation of hydrogen bond we have u = 0, and, as hydrogen
bond is weak, we can expect that putting .o & rzo does not introduce a great error.
Taking this all into account we can write

. &+ Ay

E, = 28,— +0(_’;*°>. (26)
‘QO éak¢0

The factor 2 which multiplied the term with k = 0 in Eq. (25) comes from the fact that

there are two spin-orbitals belonging to the state & = 0. Now according to Egs. (4) and (19),
the chemical potential is to be determined from the following relation

Z{l—- Al —}=2 @n
[(@—w*+4]'"

So—p
Gk 28
(@01 + 4217 @)

or

or, approximately:
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a2 (A:;eo)
K= = =140 = 29
Z 26; &so (29)

Let us assume that k¥ < 0, then

where

g . . AO{K[ ,Q il AO 30

o—H = — (1-—K2)1/2 H 0 — (1—162)1/2 o ( )

For 4y = 0 we have 6o—p =0, no = 1, n40 = 0, as it should be. Inserting Eq. (30)
into (26) one gets

Ao(1+1x])?
N

€2y

This equation seems to be more correct than that obtained in Witkowski’s paper [1],
as it takes into account the fact that the total number of non-bonding electrons is constant
during the formation of hydrogen bond. Witkowski’s expression for the ground state
energy is correct only for k = 0 and in this case agrees with our result. We see that the
lowering of energy after formation of hydrogen bond satisfies the condition |Ey| > 4,,
as |k| < 1 must hold. If this last inequality is not fulfilled, then the dynamical model
cannot be applied to such hydrogen bond. Such situation can arise, of course, in the
case of a very strong hydrogen bond, and as we noted at the very beginning of this paper
such cases cannot be properly described by such model. The reason for this lies in the
derivation of the Hamiltonian (1) (see [1, 2]). We note now that x and 4, are not indepen-
dent, because of Eq. (22). For k¥ < 0, 4, diminishes with the increase of |x|. Forx = —1
we have 4, = 0 (as 4,.,, see Eq. (29)). In the case k¥ > 0 the expression for the ground
state energy is the same as in Eq. (31), however, now 4, increases with increase of .
Therefore, for x € (—1,0), the hydrogen bond energy diminishes slower than 4, and is
not a linear function of 4,. The opposite situation arises for x € (0, 1), when the hydrogen
bond energy increases faster than 4,.

We can conclude that the change in the chemical potential of non-bonding electrons
during the formation of hydrogen bond gives the additional stabilization of this bond,
which was not noticed in the previous papers [1, 2].
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