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INFLUENCE OF LOCAL ORDERING ON THE VALUE OF SPIN
WAVE STIFFNESS CONSTANT IN FERROMAGNETIC TRANSI-
TION METAL ALLOYS*

By A. JEZIERSKI
Ferromagnetics Laboratory, Institute of Molecular Physics, Polish Academy of Sciences, Poznan**
( Received October 9, 1976)

An expression for the spin wave stiffness constant D of ferromagnetic alloys is derived
without using. the Hartree—-Fock Approximation. Tt is shown that D is very sensitive to
distribution of impurity atoms in crystal. Using the coherent potential approximation and
cluster model the numerical calculations are made for NiFe and NiCo alloys.

1. Introduction

The energy of a long wavelength magnon is given by the simple formula E, = Dg?,
where D is the spin wave stiffness constant. Early calculations of magnon energy in the
ferromagnetic transition metal alloys were baséd on the one-clectron Green functions
which were calculated within the coherent potential approximation (see: Fukuyama [1],
Hill and Edwards [2], Riedinger and Nauciel-Bloch [3]).

An expression for D in terms of the one-electron Green functions is very useful to
calculate the configurational average in CPA. However, this procedure has some short-
comings. One of them is that the Hartree-Fock Approximation has to be used. Another
one is the difficulty of taking into consideration the change of the hopping integral with
concentration. In this paper we present another method to calculate the value of the
two-particle Green function without using the Hartree-Fock Approximation.

2. Outline of method

We consider the ferromagnetic binary alloys 4,_, B,, where ¢ is a concentration of the
component B. The Hamiltonian for this system is the following:

H = Z tljal-:-ajn-"' Y e+ Y Ingn, . 1)
]
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Here g, is the atomic potential, and it takes the values ¢, and &5 depending on whether
s1te I is occupied by atom 4 or B, 7;; is the hopping integral which takes the values A e 1R i
tf!, or 7. Similarly, J; the intraatomic Coulomb interaction takes the values I, or Ip.
The operators ny,, d;, and 4a,, are the occupation numbers, the creation and annihilation
operators for electron in the Wannier states at the lattice site R, with spin o, respectively.
Since the Hamiltonian (1) has a rotational symmetry with regard to the total spin [H, Sy ] =0
we may use, similarly as Hill and Edwards [2], an exact formula for the spin wave stiffness
constant D derived by Edwards and Fischer {4].

D= 3(n+ —— )[ Z gy + 1 dVig,
i Z Z <<ak+—ak+§ alj+ak’—>>m=ovk8kk‘ Vk'sk’:I s @)
k K

where n,, n_ are the total numbers of -+ and — spin electrons and < @;_ay,; e >,
is the two-particle Gréeen function. In the early papers the expression for D in the case of
alloys was obtained by using the Hartree-Fock Approximation for the evaluation of the
two-particle Green function. Now we calculate the two-particle Green function directly
from equation of motion. Our aim is to find the local two-particle Green function. The
calculations are made in the Wannier representation. We transform <ag— @y ; @i+ - D,
into the Wannier representation by the transformation

+ Lo
-Gy O 1A - Do
1
N2
ljmp

«,B8,7,6=4,B

AR O il aB 8 G e e B L A oG 3)

Here ¢} is zero-one operator (formula (7))

The two-partlcle Green functlon <a,_ b3 Gy By >

satisfies the equation

Go(lJ m P) = [a)—s +el] 1[<[al ajes m+a —-] Dapys
+ Y Y [5G mpY)— £5Go(ri’ s m'p%)]

réltj c=A,B
"‘tzﬂ[Go(lmlaC m’p’)— Go(j*j*; m'p?)] =L[Go(I"l%; mypa)fszjaap
+ G, (P11 s mp’) LG (PPEfE mp%)], 4)
where
Go(I?; m'p?) = (@it a5 anay- Y37,
G1(lalala ; m'p ) = <<”1+az J+ 5 am+api>>foauﬂy65
Gy (5" m'p%) = nj-ai“aye s apia, Y. (5)
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Here Greek superscripts indicate the type of atoms (4 or B) at the given site. In order to
solve equation (4) we apply the Random Phase Approximation to the functions G, and G,.

(GY8 = (i, > (1=8,3,9) - Go(F; m'p’) and G5™ = 0,)
In this way we get the following equation for the function G,
Go(l%j?; mp’) =~ [0~ 8? & + 1< > (1= 6,;0,5) + 176,30, 1~ !
*[CLa 513 Ay a8y T4 Dapra+ 1 {Go(P1; m'p")

=G’ mp)+ Y Y ARGt mp’) — 11 G s m'p0)}]. (6)
r#l#j e=A,B
The function G, depends on the distribution of impurity atoms in crystal. We may introduce
zero-one operators ¢; to equation (6). Our operators ¢; will be expressed by standard ¢
operators (see Edwards, Jones [5]) by the relation

¢ = 1—py+0(285,—1). (7)

Equation (6) may be solved by iteration. We assume that the ratio of #,1 is small
for the ferromagnetic transition metals. In the following calculations we will consider
only the case of strong ferromagnet where in the ground state all the electrons spins are
aligned in the same direction. We make the assumption that {n,,> is the same for all 4
and B sites. After some manipulation we obtain the following expression for the two-
particle Green function, neglecting the terms of higher order than (z,,/1)%.

cichency * Go(I5"s m'p?) = Go(I%”3 P 1010 jms

where
Go(I%*%; j°1°) = W1+CfW2+C?W3+CfC?W4+W5 Z cf
r#ElFEF
+ Wy FHWac? Y B+ Weeie] Y o, (8)
rEIE] rEI#E] r#El#] "
where y

Wy = x(4, A+@z=1) -y (4, 4),

W, = p(B, A)+(z—1) s (B, 4)—W,.

Wy = —W,+p(d, B)+(z—1) - u(4, B),

W= —W,—W,—Ws+x(B,B)+(z—1) - r(4, B),
We = —r(B 4), ‘

We = —Ws—s(B, A)+u(B, A),

W, = —Ws—u(d, B)+s(4, B),

Wy = —Ws— We—Wy—r(4, B)+(B, B),
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wop) = blap)d(ep) [t*(BB)d(aB)+ t*(B)d(BB) +2t*(af) t(BALf() d(of) —BA(BB)II,
s(@p) = blap)d(ap) [t>(BB)d(f)+1*(af) d(Bp) + 2t *(B) t(BP) [ [y d(B) —f(B)d(BB)I],
(@) = b(op) [1+2t*(@B)d(@p) {f()+f(B)}],
x(B) = b(af) [1 +41>(or) d(oor) ()],
V(o) = bloor) 282 (o) d?(ocr),
r(@p) = b(BBYd(BB) {t*(ap) [d(Bo) + d(ap)] +2t(BB) t*(«B)f(B) [d(Bor) — d(@B)]},
d(p) = [w—es+e,+4,1,
b(e) = dB) {aj.a;+ g
fl@) = [0+ 1], (&)
tap) = 1,
4, = {nx>1,.
In formulae (8) and (9) thefe are three different hopping integrals t44, P2, and 45 = ¢54,

In our calculations (AB is set equal to the average of 44+ t®, We consider only the change
induced when A atom is replaced by B atom. Therefore we may rewrite

tap = tga+h, o (10)
and
tgp = tqq+2h,
where

h =% (tgg—t40)- (1

In formula (8) we assumed that the hopping integral is different from zero only for
nearest neighbours. .

Let us consider a simple two-dimensional square lattice. We take a cluster consisting
in a central atom and its nearest neighbours. We divide all crystals into such clusters.
In figure 1 we denoted the sites which were included in the summation in formula (8). In our
averaging procedure we consider any central atom and all of the correlations from nearest
neighbours. The summation is over all atoms in the crystal (formula (8)). By solving equation
(6) we obtain an expression for two-particle Green functions, whose values depend on
the local value of ¢ #;; and 7;. In formula (2),’ which determines the spin wave stiffness
constant, there are sums over all / and j sites in the crystal. This sums we calculate for
two cases:

1. we take an appropriate average of equation (8) over possible distributions of

impurity atoms; A
2. we assume a specified distribution of impurity atoms in matrix (cluster model).
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In the first case we are using the Edwards methods [5] to obtain the configurational average
of two-particle Green functions in CPA

.Go(lJ'Qﬂ) = Witc[Wo+Ws+(z—1) Ws]

FEWa+ (=D Ws+(z=1) Wil+3@—1) W, (12

O O o o

O O O O

Fig. 1. Schematic diagram illustrating the two dimensional cluster consisting of a central atom and the
nearest neighbours. The central atoms are chosen at /, /i, /,, /s and j. sites )

Substituting (12) into (3) and (2) we get the final formula for the spin wave stiffnes constant
for disordered alloys. Numerical results are described in Section 3. In the second case
we assume some ordering in alloys. The whole crystal is divided into small clusters consist-
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Fig. 2. Cluster model used in the numerical calculation
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ing of 63 atoms (figure 2). Every cluster is formed by a central atom surrounded by its
z nearest neighbours, by z; second neighbours, z; third, and z, fourth neighbours. Then
we included into our cluster eight corner atoms so that we get cluster presented in figure 2.
Early experiments have pointed out that NiFe alloys have a strong tendency to order.
Mikke et al. [6] have shown experimentally and theoretically, basing on the Heisenberg
model, that spin wave stiffness constant have the anomalous behaviour near 25% Fe.
Then in our calculations we investigate NiFe alloy with 20.6 % Fe (i. e. 13 atoms in cluster)
The numerical results are described in Section 3.

3. Model calculation for nickel alloys. Numerical results

We consider the strong ferromagn\etic alloys. Our calculations are made in the tight
binding approximation for electron energy. We take

& = 4t[3—cos (% ak,) cos (4 ak,)—cos (% ak,) cos ( ak,)—cos (} ak,) cos (}+ ak,)], (13)
where ¢t = W/16, W is the bandwidth and a the lattice parameter. The values of the sums

1
= E ny, +f(k), where f(k) = |Vig, |? or Ve, were obtained by integration over 1/8 at
k

the first Brillouine Zone for the f. c. c. lattice. The mésh of 125000 points was used. The
Fermi energy ¢y is determined from the equation

1
it E =n. 14
N }nka n } ( )

ko

Here # is the number of holes.
In the following calculations we used the notation

1 Z . P(4)
Nt ‘nk+}vk8klz = 'W?az‘ 162 \ / (15a)
1 : : -, L(4)
N s Viog, = Wa® ——16— (15b)
3
4ep :
A=—. 15¢
W (15¢)

The numerical values of functions L, P and n are presented in Figures 3 and 4.
Now we rewrite the formula (2) in the form

Wa*
96(n, —n

D(e) = SLA-3 WG PAL, (16)
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Fig. 3. Plots of the functions L and P versus A4 = 4 eg/W

Fig. 4. Plot of the function »n versus A = 4eplW
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Fig. 5. Plot of exchange the spin wave stiffness constant D versus concentration Fe for different A
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1 z : .
where G = N Go(lj;jl), and Go(lj:jl) is determined by Eq. (8). For pure nickel we
z

=
choose the followijng values of the parameters: n'= 0.6, 1 = 0.95 eV, W = 1.2 eV. The value
of D for such parameters is 542 meV - A? in agreement with the observed value at T = 0°K
(Stringfellow [7]). The values of atomic potentials were taken from Hasegawa and Kana-
mori [8]. Then we took the values of bandwidth for Fe and Co as Cornwell et al. [9] and
Batallan et al. [10], respectively. We examined the dependence of D for NiFe alloy on the
value of AI = Ip,—Iy;. The results are presented in Fig. 5. For the 41 negative we ob-
tained the critical concentration at which D vanishes.

Substituting (12) into (3) and (2) and using the coherent potential approx1rnat10n
we made numerical calculations for NiFe and NiCo alloys. We took similar values of
intraatomic Coulomb interation and bandwith as Cornwell et al. [9] and Batallan et al.

10 - The experimental results from neutron dffraction:{
\ A X Mikke et al.[6]
09 NoX «—-—Hennion et al. [113
i ‘\ A Menzinger et al. [12]

'\ B Hatherly et al.(3)
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Fig. 6. Value of D(c)/Dni as a funcuon of impurity concentration & for NiFe alloy. The full curve I is
reproduced from Riedinger et ‘al. [3] the Curve 2 presents Hill and Edwards [2] results and the broken
curve corresponds to the meéthod descr1bed in the text

[10]. On Fig. 6 we presehted our theoretical results. Points denote experimental data,
the solid lines are the theoretical results of other authors. Curve / presents Riedinger and
Nauciel-Bloch [3] results and curve 2 those of Hill and Edwards [2]. The broken line
across experimental points corresponds to our-theoretical results. As can be seen from
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Fig. 6 our model and method of calculations (without using the Hartree-Fock Approxi-.
mation) gives reasonable agreement with experimental data for.chosen parameters [8-10].

" Then we apply our model to NiCo alloys. Numerical results will be obtained for the
values of parameters assumed as Batallan et al. [10]. For such parameters we give the
dependence of the spin wave stiffness constant on concentration presented in Fig. 7.
Our results are close to the Yamauchi et al. [19] experimental data, but are different from

D(c)/DN:

0. . . PR S
0 01 02 03 04 05 06 O

[+
Ni Co

Flg 7. Values of D(c)/DN, as a function of impurity concentration ¢ for NiCo alloy. The full curve [ is

the RPA-CPA results (Hill and Edwards [2]), the curve 2 presents our results for parameters described in

the text. The broken curve is rigid band results (Wakoh [21]). Points denoted experimental data: x Hinoul
and Witters [20]; ® Yamauchi et al. [19]

the Hinoul et al. [20] experimental data and the Wakoh [21] theoretical results. The dlﬁ'er-
rece is that our model included change of hoppmg integral and we did not apply the Har-
tree-Fock Approximation in calculations of the two-particle Green function. Next the
spin wave stiffness constant D was calculated for the clusier model described in Section 2.
We made numerical calculations for three cases, corresponding to the concentration of
impurity which was assumed as 20.6%;:

case 1 — the Fe atoms are in the center of cluster and the rest of atoms occupy the first

shell,
case 2 — the Fe atoms are in second, third and fourth shell,
case 3 — seven atoms Fe occupy the first shell and six atoms of Fe are dlstrlbuted in the

second shell.
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The values of D for these three different distributions of Fe atoms. in cluster we listed
in Table 1. As it is evident from Table I the value of spin wave stiffness constant D depends
on the distribution of impurity atoms in the matrix. Similar results were obtained by Mikke
et al. [6].

TABLE I

Concentration Distribution of Fe atoms Stiffness constant D [meV A?]

20.6% ' 1 l an
2 390

3 l 445
CPA (disorder) 430

4. Conclusions

Hill and Edwards [2] discussed the problem of magnon energy in the ferromagnetic
transition metal alloys using the Hartree-Fock Hamiltonian. In the limit of pure metal
they obtained the RPA results for D (see Edwards [22]). The calculations we report in
this paper were done within the Random Phase Approximation. We applied this approxi-
mation to the higher Green function in the equation of motion for the two-particle Green
function. Our iterative method described in Section 2 is true if /4 < 1. The numerical
results showed that the contributions from the terms higher than (¢/4)® were very small.
For pure metal our results give the RPA result and some contribution from the band
structure. If we compare our method of calculation of the two particle Green function
with Hill’s and Edwards’ one [2] we find that our method may give results beyond the
RPA. All calculations described here may be applied to the weak ferromagnetic alloys.
In recent paper Edwards and Hill [2] showed that the spih wave stiffness constant is very
sensitive to the assumed exchange splitting in the pure nickel. In this paper we presented
the influence of the change Al = I, — Iy; on the final value of D for NiFe alloys and made
calculations assuming the different ya'lue. of hqppihg integral 744, 148, and ¢®2. The value
of parameters was taken from Hasegawa and Kanamori [8], Cornwell et al. [9] and Batallan
et al. [10], and our results are in agreement with the experimental values.

At last, assuming simple cluster model in which we consider interaction between all
nearest neighbours, we calculated the dependence D -of the distribution . impurities atoms
in-cluster for three different cases. Our results are similar to those of Mikke et al. [6].

The author wisches to thank Professor Dr. J. Morkowski for extensive discussions,
for his critical remarks, and for reading the manuscript.
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