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DISTRIBUTION OF TEMPERATURE IN SEMI-TRANSPARENT
SINGLE CRYSTALS DURING THE PROCESS OF THE
CZOCHRALSKI PULLING. II. ANALYSIS OF THERMAL FIELDS
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AND J. ZMUA
Military Technical Academy. Warsaw **
( .Receiued August 3, 1976, final version received December 16, 1976)

Determination of thermal fields in single crystals pulled by the Czochralski technique
is enabled by the utilization of analytical or numerical calculation techniques. Comparison
of the results obtained with the help of either of these techniques shows that numerical compu-
tations result in far less steep thermal gradients. Semi-transparency of crystals contributes
to an increase of drops of temperature. In the paper, some methods of modulating thermal
fields in single crystals, as well as some techniques of measuring temperature at side surfaces
of crystals and at their geometrical axis are also discussed.

1. Principal methods of analysis of thermal fields of single crystals

The problem of determining the distribution of the thermal ficld of a single crystal
growing by the Czochralski method has been studied by many scientists. The initial research
was performed by Billig already in 1956, i.e. shortly after the first successful production
application of the Czochralski technique. In the late sixties this research became especially
intensive, which gives evidence of the importance of the problem. Indeed with the tempera-
ture gradients in a crystal, thermoelastic stresses appear and also other defects, i.e. dis-
location, block structure etc.

This leads to deterioration of the quality of a crystal and in extreme cases may result
in its destruction.
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The so far existing approaches to this problem made by several authors may be roughly
divided into two groups: the first group wouldc over the attempts to determine the temper-
ature distribution in the crystal analytically, the other — numerical computations. In
analytic solutions the boundary condition on the side surface of the crystal is assumed
linear in form; itis the only possibility of making it independent of the z coordinate directed
perpendicularly to the front of crystallization. In the calculations of the author [1]
convection in the protective atmosphere is not taken into account, which should not result
in a large error for materials showing high melting points. According to Reed [2], convection
of gases at the 1 atm pressure, occuring during crystallization of the material with the melting
point 2000°C results in a flux of heat comparable to black body emission at the temperature
of 800°C. Some analytic solutions allow for convenction by describing it mathematically
in the form of an element proportional to the difference of temperatures within the accuracy
of the constant E,. Brice [3] assumed

#LT, M

3 1/4
E, = 0.548 {_gw} :
Here Tp — temperature of side surface of the crystal, T, — temperature of the crystal
environment, L — specific heat of solidification, ¢ — density, # — viscosity of the melt,
x — confficient of thermal conductivity, ¢ — specific thermal capacity.

The analytic solutions are approximate since some mathematical formulations are
subjected to necessary simplifications and due to the forms of definitions of certain

parameters, e.g. T,, [1]. The following formulae determining this parameter are possible:

_TL+T,

i
= @
or [4]
AT = (TP = THT,— Tp), 3
or
Tat = 5T037;_3T049 (4)

‘where T, is melting point of the material.

Many authors assume that 7' = T,/2. The heat transfer at the side surface depends
on the chosen value of T, and generally does not correspond with the realistic situation:
it is smaller than the real value close to the front of crystallization where Ty > T,,, and
greater in the parts of crystal distant from the interface (T < T,,).

The analytical solutions yield results similar conceptually: the axial distributions
of temperature are changing as sinh or cosh, whereas the radial distributions are determined
by a series of Bessel functions of the first type and of the zeroth order.

A new approach has been presented by Etori [5] who looked for the solutions based
on the analogy between the thermal system and corresponding electrical circuit.

The numerical method provides better accuracy. First of all it enables us to take
into account the dependence of crystals on temperature, which is specially important
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for the heat conduction coefficient [6]. Also, linearization of the boundary condition
at the side surface of a crystal for the entire specimen is not necessary. Sakharov and his
coworkers [7] divided a crystal conceptually into thin slices perpendicular to the axis
of a boule; for every slice a uniform temperature along the z axis was assumed and separate
boundary conditions formulated. However, neither they nor Akiyama et al. [6] have
taken convection into account: their calculations regarded only the process performed
in vacuum; this improvement has been made by Arizuimi and Kobayashi [8]. In Fig. 1
and 2 the temprature distributions taken from the paper od Sakharov and others are
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Fig. 1. Comparison of axial temperature distributions in silicon single crystal computed numerically
(curve I) by Sakharov and others, and analytically (curve 2) by Billig

Fig. 2. Comparison of radial temperature distributions in silicon single crystal computed numerically
(curve 1) by Sakharov and others, and analytically (curve 2) by Billig

presented. These distributions are compared with the ones calculated by Billig [9]. Both
works consider silicon single crystals and do not allow for volumetric emission of this
material. We see that in the result of numerical calculations much smaller thermal gradients
are obtained.

At present it would be difficult to judge which one of the computational methods
presented is better. These doubts are probably common, which is proved by the increase
of number of works taking into account both computational techniques.

2. Thermal fields of semi-transparent materials

‘Making use of the formula for temperature distribation in a semi-transparent
material [1], the thermal field for crystals of yttrium-aluminum. garnet Y;AIPO,, and
lithium niobate LiNbO; has been calculated for three cases:
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1270°K

(a) boule of 2 cm diameter and 5 cm length pulling with afterheating up (T,
in case of YAG and 1070°K in case of LiNbO;);

(b) boule of 1 cm diameter and 5 cm length pulling with afterheating (T, = 1270°K
in case of YAG and 1070 for LiNbO3);

(c) crystal of 2 cm diameter and 5 cm length pulling without afterheater (7, = 300°K
for both YAG and LiNbOjj.

The results aie given in Tables I and IL. Simultaneously the temperature distributions
for the same materials are computed without taking into account volumetric radiation
of energy Tables I and II. Axial drops in temperatures are calculated along the geometrical
axis of the crystal pulling in the direction [100] in the case of YAG and [0001] in the
case of LiNDOj.

TABLE 1
Axial distributions of temperature in single crystals Y3AlsO,, (T°K)
) ' Non-transparent | Semi-transparent Calculations according
z ‘ crystal crystal | to Troitsky
(cm) | | .
a I b | ¢ a j b ¢ a } b ' c
0.0 | 1270 1270 300 ‘ 1270 1270 300 1270 1270 | 300
0.5 1298 1309 389 1306 1280 | 386 1310 1285 | 382
1.0 1343 1359 499 1330 1302 489 1353 1306 482
1.5 | 1405 1418 612 1396 1335 608 1404 1333 598
2.0 1480 1490 763 1446 1379 726 1466 1376 733
2.5 1567 1562 914 1523 1439 886 1541 1435 895
3.0 1662 1652 1081 1616 1519 1104 1633 1508 1071
3.5 | 1765 1746 1367 1731 1629 1202 1745 1614 1289
4.0 1894 1862 1591 1863 1780 1422 1872 | 1760 1457
4.5 2054 1996 1857 2013 1967 1843 2027 ‘ 1960 1833
5.0 2242 | 2262 2242 2242 2250 2241 2246 2242 | 2250
‘TABLE 11
Axial distributions of temperature in single crystals LiNbO; (7°K)
WNon-transparent Semi-transpatrent Calculations according
o crystal i crystal . to Troitsky
(cm) a
’ a ‘ b , c a b ‘ c a | b c
|
0.0 ‘ 1070 | 1070 300 1070 1070 300 1070 1070 300
0.5 1089 1084 363 1084 1082 336 1083 1079 358
1,0 1129 1102 447 1108 1096 425 1103 1090 429
1.5 1134 1124 538 | 1126 1109 525 1123 1103 510
2.0 1164 1155 640 1152 1120 625 1148 1121 602
2.5 1200 1189 754 1175 1150 737 1181 1146 708
3.0 1244 1228 880 1205 1185 890 1216 1181 829
3.5 1297 1281 1027 1293 1234 984 1275 1232 970
4.0 1362 1349 1100 1357 1304 1122 | 1343 1303 | 1134
4.5 1441 1442 1348 1436 1405 1328 1429 1404 | 1322
50 | 1532 1534 1532 1531 1542 | 1530 1531 1536 1531
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All this calculations are based on the earlier work of the same authors [1]. The radial
distributions refer to the surface z = 4.5, i.e. such:drops in temperature occur in a solid
phase distant from the front of crystallization by about 5 mm. These results are presented
in Tables IIT and IV, :

TABLE III
Radial distributions .of temperature in single crystals. Y3Al504, (T°K)
Non-transparent T Seml transpa_rent Calculatlons accordmg
r crystal crystal to Troitsky
* (om) i ,
a l b l [ a ‘ b ; ] c a | b ' c
] T ‘ S
0.0 2065 | 2059 | 2063 2055 1992 1993 2054 1995 1988
0.1 2065 2058 2062 2055 1992 | 1993 2054 1995 1987
0.2 2065 2056 2061 2054 1989 ‘ 1992 2053 1993 1986
0.3 2064 2052 2059 2053 1986 1991 2052 1989 1984
04 | 2063 2047 2056 2050 1980 1990 2050 1983 1981
0.5 2061 2041 2053 2048 1873 1987 2047 1973 1978
0.6 2059 2049 2044 | 1984 2043 1974
0.7 2056 R 2045 2040 1980 2039 1969
0.8 2053 2039 2034 1976 2033 1963
0.9 2048 2032 2028 1970 2028 1955
1.0 2042 2024 2020 | | 1964 2019 | | 1944 -
TABLE 1V
Radial distributions of temperature in single crystals LiNbO; (T°K)
Non-transparent Seml -transparent Calculations according
r crystal crystal | to Troitsky
(cm) K 1 . :
a ’ b | ¢ ‘ a b c a ’ b ’ c
" [ | | | |
0.0 1436 1405 1368 1408 1405 1389 1432 1406 1344
0.1 1436 1404 1368 1407 1404 1388 1431 1405 1343
0.2 1436 1403 1368 1407 1403 1387 1431 1404 1342
0.3 1435 1401 1367 1406 1401 1386 1429 1401 1340
0.4 1434 1398 1366 1405 1398 1384 1428 1397 1338
0.5 1432 1394 1364 1404 1394 1382 1426 1391 1335
0.6 1431 1362 1402 | 1379 1423 1332
0,7 1428 1360 1399 1375 1420 1328
0.8 1425 1357 1396 1371 1416 1322
0.9 1422 1353 1392 1366 1411 1317
1.0 1418 | 1348 1387 | 1360 1405 | 1310

'The conclusions drawn from these calculations. are clear to every worker involved
in growing single ctystals by the Czochralski method. They are mentioned here as a con-
firmation of correctness of final calculation formulae. So:

— heatinig up of the crystal cons1derably diminishes axial thermal gradients and

partly radial-gradients;
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— axial drops in temperature decreases with increase in crystal diameter;

— crystal diameter influences also thermal gradients in the radial direction. Namely,
in large boules temperature differences are greater close to the edges, and in the inside
area, close to the geometrical axis of the crystal, they are subjected to considerable
softening. .

In the computations performed in [1], only the first five elements of the series (15)
are taken into account. Precisely, this is only an approximation though relatively good.
In Table V distribution of temperature at the front of cristallization z = z, is given.

TABLE V
Distributions of temperature at the interface in Y3Als0,, and LiNbO; single crystals (7°K)
. Y5A1501, LiNbOs '
(cm) a b @ a b c
0.0 2242 2242 2242 1531 1542 1530
0.1 2241 | 2241 2241 1530 1541 1530
0.2 2238 2241 2240 1529 1541 1529
0.3 2239 2241 2240 1529 1541 1529
0.4 2240 2241 2241 1530 1542 1529
0.5 2240 2238 2241 | 1530 1540 1529
0.6 2239 2239 1529 1529
0.7 2238 2240 1529 1529
0.8 2241 2241 1530 1529
0.9 2241 2242 1531 ' 1530
L0 | 2235 2237 1527 | ‘ 1527

Deviations from the melting point are here not greater than 0.5% of the nominal value.
When the axial gradients of temperature occuring close to the interface is about 350°C/em,
this gives a maximum deviation in the shape of crystallization front from the assumed
flat surface of about 0.3 mm, which can be neglected in practice.

3. Practical techniques of measurement and control of heat fluxes

According to the above calculations the problem of control of heat fluxes'in a growing
single crystals is especially important.

One of the basic ways of modulating these fluxes is achieved by means of afterheaters.
Some technical designs are shown in Fig. 3. The important thing that is to be remembered
is fitting the maximum crystal diameter to the diameter of a crucible, since the dimensions
of the latter considerably influence the thermal field in the vicinity of the solid physe.

Temperature measurement in a growing single crystal is rather cumbersome. Several
techniques have been applied (Fig. 4). One is the placement of a thermocouple in the crystal
near the axis of the boule [10]; in order to perform this, acavity is made. This technique
enables temperature measurements close to the front of crystallization, it provides, however,
some inconveniences and limitations: it gives the distribution of the temperature in the
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axis of the boule only. Finally it causes difficulty in turning the crystal and introduces
considerable perturbations to the thermal field. The measurement of temperature, of the
crystal side surface by means of a pyrometer is less accurate. The measurement should
be performed discretely as is shown in Fig. 4b. For semi-transparent crystals these two
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Fig. 3. Types of afterheaters used for pulling single crystals of oxide materials: inductive afterheater (a)
and resistance one (b). Notation: I — crucible, 2 — ceramic “nest” of crucible, 3 — ceramic shield,
4 —r.f. coil, 5 —resistance afterheater, 6 — induction afterheater, 7 — internal ceramic shield
Fig. 4. Techniques of temperature measurement of a growing single crystal. Notation: K — Crystal,

T — thermocouple, P — pyrometer
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techniques may contribute to give the desired effect. The technique of measurement
presented in Fig. 4c is not reliable since the result refers to the value of temperature
averaged with respect to the crystal radius.

4. Temperature distributions in semi-transparent crystals according to Troitsky

Temperature distributions in semi-transparent single crystals have been studied by
Troitsky [11]. He analyzed the exchange of thermal energy between adjoining volumetric
elements of a crystal. He showed that in a semi-transparent medium characterized by an
absorption coefficient u and a refraction coefficient #, the radiational heat flux is propor-
tional to Tx—T, with the proportionality coefficient K equal to

i 16n%cT?
K=, 1 ©)
3u
where T — temperature of crystal side surface; T — ambient temperature; 7,, — average
temperature of crystal side surface; 6 — Stefan-Boltzmann constant equals 5672 - 10-°
erg/cm*deg®. )

In Tables I—IV the thermal fields for single crystals of yttrium-aluminum garnet
and lithium niobate calculated from the formula developed by Troitsky are given. The
results do not differ considerably from the results of this paper. )

5. Conclusions

(a) Thermal field in semi-transparent single crystals is characterized by much greater
temperature differences that in the case of non-transparent crystals. It is due toxth“eg additional
flux of thermal energy radiated by the internal regions of crystals to the environment.

(b) Temperature distribution in a crystal depends considerably on sﬁch‘factors as
afterheating of the solid phase, radius of a crystal and its absorption co‘fefﬁcient.

(c) Calculations of temperature distribution performed in the preserit; work are
consistent (within the limits of error) with calculations made by other ap;h]brs.
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