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Temperature distribution in a single crystal during the process of the Czochralski
pulling is determined by the product of the Bessel function of the first kind and zero order
(in the radial direction) and a hyperbolic function sinh or cosh (in the axial direction). Semi-

transparent single crystals emit thermal energy from the entire volume, The value of heat
lost in such a way is evaluated by a mending boundary condition at the crystals side surface
The authors have taken into account the radiation of a point at the crystal directed to the
interior of the crystal, which passcs through the solid and out the other side.

1. Statement of the problem

The determination of temperature distribution in a crystal during the process of
pulling means, theoretically, calculating the thérmal field of a limited cylinder subjected
to some given boundary conditions and some simplifying assumptions. The general
formula at the beginning is the so called equation of heat conduction, which for a cylindrical
set of ‘coordinates is:’
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This form can be solved, however, only for a very few specific cases, mainly because of
lack of information concerning the temperature dependence of the conductivity coefficients,
and because of boundary conditions, that may be sometimes very complex. For most
cases, the authors used some simplifying assumptions, e.g. considering the medium isotropic
or the generally accepted assumption that the thermal conductivity coefficient is constant,
k(I) = const. In equation (1) we used following notation: T — temperature K — coefficient
of thermal conductivity, o — densny, c— spec1ﬁc thermal capacuy, r— radlal coordinate,
z — axial’ coordinate. g . :

The above problem for a boundary in the shape of a semi-infinite cylinder-(h > R)
and disc (2 < R), where R is radias of a cylinder, and 4 its height, has been already solved
[L-5]. The problem of temperature distribution in a finite isotropic_ cylinder has been
studied prior to World War IT by Nancarrow [6, 7] (this was the subject of his doctoral
dissertation). The results of Nancarrow were used by Billing [8] and others.

When a crystal grows, heat transfer occurs in different directions Fig. 1. According
to Brice [9] we distinguish the following thermal fluxes: / — flow of energy from the
heat source heater to the crucible; 2 — loss of energy from the external walls of the crucible

%

Fig. 1. Heat transport in the process of pulling of single crystals by the Czochralski technique explanation
in the text

to the insulating material by means of conduction or radiation; 3 — heating up of a ingot
which receives heat from the crucible; 4 — heat transfer in the melt by convection and
conduction; 5 — heat transfer through the liquid — solid interface; 6 — liberation of
latent heat of solidification at the melt — crystal interface; 7 — draining of energy from
the phase boundary; & — thermal conductivity of the crystal; 9 — radiation of energy
by the side surface; 10— radiational heating up of walls of the crucible; 77 — thermal
flux emitted by the afterheater; 12— emission from the surface of the liquid phase; 13— con-
vection through the protective atmosphere; /4 — heat offtake through the seed handle.

In these calculations for the reason of simplicity only half of the processes mentioned
is taken into account, namely the fluxes 5-9 and 17, /4. The remamlng ‘processes will be
included as experimental amendments.
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2. Simplifying assumptions

Let us assume as a result of some idealization the following simplifying assumptions:

(a) the crystal considered is in the form of a cylinder characterized by a constant
diameter throughout its length. We neglect the influence of a cone created during widening
of the crystal. The calculations are performed wsing cylindrical coordinates, as shown
in Fig. 2;

(b) the case is orthotropic, i.e. the properties of the material in the direction parallel
to the axis-of a boule differ from the properties in-the direction perpendicular to the axis of
a boule, and the physical properties in direction perpendicular to the axis of the boule show

2
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Fig. 2. Set of coordinates used for calculation of temperature distribution in a crystal

isotropy (cross isotropy or otthotropy). The results of computation may be thus applied
both to isotropic media (silicon, germanium, perovskite, noble spinel, yttrium-aluminum
garnet) pulling in the direction of any given axis of the elementary cell, and to single-axis
crystals grown parallel to the anisotropic direction (leukosapphire, lithium niobate,
lithium tantalate, sheelite, rutile oriented in the direction of axis “c” '

(¢) the melt-solid interface is flat. In practice, however, we generally encounter the
isotherm of solidification is convex in the direction of the liquid phase. This convex1ty
.can be reduced by minimalizing heat transfer through a.side surface of a crystal, e.g. by
application of radiation shields or scorching the crystal. For large diameter samples the
front of crystallization will be flat over a considerable area;

(d) the temperature distribution in a crystal is quasi-stationary. This assumption
is in fact a substantial one and thus it should be discussed in detail, as follows.

3. Static and dynamic fluxes of heat

During the growth process both ends of the crystal are held at constant temperatures:
the lower end submerged in melt — at temperature 7, equal to the melting point of the®
material; the higher one, placed in a holder — at:the temperature Ty, where T, is the.
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temperature of environment of the crystal. The mean heat flux in a crystal resulting from
this temperature difference is:

K . i
Qs = T (T,—Tp)- €))

Here notation is as follows: Q,—- static heat flux; /— crystal length.

This occurs even when a crystal does not grow, e.g. after seeding and before starting
the pulling mechanism. Q, depends on the crystal length and decreases with the increase
in length. Let us call it a static flux.

When the pulling mechanism is started the crystal increases in size; the solid phase
ought to conduct the heat of solidification liberated in the process. It is “dynamic™ heat
flux, Q,.

Dynamic flux of energy is added to the former one static flux. It depends on the rate
of growth of crystal mass only and is:

Q, = nR*vpL, 3)

where v — rate crystal growth, L — latent heat of solidification.
Allin all, the heat carried away by the crystal from the front of crystallization is equal
to the sum of static flux Q, and Qy:

Q = Qs+Q¢b (4)
0 is the total heat flux.

The time variation of this flux- reads:

0Q ol KU ‘ :

40 = il 6_tA T (T.—To). . ()

Since oxide crystals are pulhng relatlvely slowly, AQ forms a small part of Q' only;

e.g. for LINbO, grown at the rate of 6 mm A (1.7 - 10~* cmysec) the ‘ratio 40 Qo equals

0.17% for I = 1 cm; 004/, for I = 2'em; 0.02% for / = 3 cm; and OOI%forl— 4cm 1

The heat’ flux thiis varies significantly only within a small range. So one can assume that
the crystal grows under qua51-stat10nary cond1t10ns

4. Solution of the equation of. heat..conduction

© The startlng point is the equatlon of heat conduction which in’ cyhndncal coordlnates,
can be written as follows:

x.[0 [ oT N 1 °T N o*T oT ©
——lr— — = Ky s = € ——,
o\ ar) "7 32 |72
where «, — coefficient of thermal conductivity in radial direction, -~ coefficient of
thermal conductivity in axial direction. Sl
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Since the problem is- quasistationary, the time derivative vanishes. We separate the
variables twice in a homogeneous equation, assuming that

We obtain the following set of equations ‘

1 d dP N 1 e v? P ' )

— | — E— —_—— =0, o
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d(pz ; =V, ( )
az  p? SR ) 10
dz* K o (10

The solution of the second equation is
D = Ae™’+Be™M. 1)
Due to the axial symmetry of the problem
=1 and A=B=1% v=0 (12)

The solutions of the (8) and (10) are

PO = 3 Ao (13
Z(z) T(O z) T, = C exp ( jK ) +D exp( J’f) | (14)

So the temperature distribution is

f(r, 2) = To+(T,=To) Z A o(ﬂf,r/\/ %) [Cn eXﬁ <\I;K ) +D, exp( \/"—>] .15

- The solution should be assumed.to be the form of a series of the Bessel functions,
sinice a single Bessel function does not fullfil the boundary condition 7(r, z) = T,. The
boundary conditions for 7(0,0) and T(0, z,) yield

T©0,0) = Ty, T(0,z,) = T, | (16)
ie.

o B e ey
Cp= «Dj=-—"2I 17)

- 2sh (Buzoli/%2)
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5. Determination of the constants B, and A,

The further procedure involves determination of constants f, and 4,. The procedure
used here differs from that of other authors. Two approaches are possible:

(a) an analytic solution of the problem, which requires the transformation of boundary
condition at the cylinder side surface to linear form;

(b) solution by numerical methods.

In the first case, the constant Bais determlned from the boundary condition for the
side surface of a crystal

orT o
—m(a—) = - (TR —2.Tp), (18)
rJg 2

where ¢ — Stefan-Boltzmann constant, 3, — emissivity of a crystal, 2, — emissivity of
environment radiation shields or afterheater, T — temperature of side surface of crystal.
The right hand side of this formula may be written as follows:

ocH .
- 'I:ai(TR—'To), i 19

where
Ty = 3 (T+To), (20)

and H -— average emissivity of crystal.
The formulae (15), (17), and (18) yield

o0

N, Sh(B.zl/x) 3
>:1J A Sh (ﬂnzo/\/ z){ \/ ﬁn l(ﬁnR/\/ED'l' Tl\vJO(ﬁan\/Kr)} (21)
from where
V% B 1(BuRINK,) = T:asv‘lo(ﬁnR/\/Kr) (22)

Here A, and S, are constants. Making the simplifying substitutions

— . . oH __ .
BRI\, =x, — R} =0 23)
we can rewrite (22) in the form
xJ(xX) = aJo(x), 24

The functions xJ 1(x) and aJo(x) in terms of x are presented in Fig. 3. From the point
of intersections of the curves we read x, and from (23) — the corresponding values of f,.
This method has been presented by Nancarrow [7].
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Then the constants 4, are determined. We utilize the properties of the Lommel
integrals [10]. There are two kinds of these integrals that are suitably modified in some
specific cases. If o and f are two different roots of the equation

aJ (eR)+aJ (aR) = 0,

b
~0018 —F(x)

3
1-aJp for YAG /
-0022 -
N
3
2-aly ffor LiNbO;
-0026 =
-0030 ; >
3810 3875 7620

Fig. 3. Plots of functions x.J,(x) and aJo(x) in the vicinity of zero points of the equation xJ,(x) = aJo(x)
the Lommel integral of type
R
LZ = j [Jn((xr)]zrdr:
0
will read after integration
1
57 {R*a*+(R%* —n®) [J(2R)]*}. (25)
For z = z, we obtain from"(17)
Zl An']O(ﬁnr/\/E;) = 1
e

By multiplication of both sides of the above formula by r - Jo(8,#/+/k,) and by integration
in the interval from O to R we obtain:

3, Ay TN o(Bur ) = | PPl

The right hand side of the above formula equals

ﬁ"’ RI(BuRINE). 26)

m
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The left hand side is determined from Lommel’s integral due to necessity of meeting the
boundary condition (18). Thus for n differing from m: the left hand side vanishes.and for
n = m one obtains

;

R? (x,a? Sy )
Aq(“ﬁi +1> [Jo(BuRIxDT @n

m

From (26) and (27) we have

= 26, 1 J_l(@/_\[@ (28)

"7 RYR, P+ B, DoBRIED]

6. Thermal emission of semi-transparent media

Semi-transparent materials emit thermal energy from the entire volume. Due to small
coefficients of absorption of oxides and their high melting points a part of this emission
goes outside and is lost from the crystal. The problem of thermal radiation of semi-trans-
parent media have been studied by Pigalskaja [11], O’Hara with coworkers [12] and
Troitsky [13]..

This fenomenon is usually accounted in the form of amendment at the right hand side
of boundary condition (18). Two approaches to the solution of this problem are possible:

(a) determination of the total energy radiated by the point D at the crystal surface.
This energy originates from the thermal radiation of internal volume elements;

(b) determination of the energy emitted by the point D at the crystal surface to its
interior and through to the environment.

The approach given in b is mathematically simpler. If a surface element D(R, 0, z)
emits heat in the direction of surface element B(R, ¢, z') placed also at the side surface
of cylinder (and through B —to environment), the crystal absorbs energy

H
AW = ?‘2“ Ta(Tr— To) (1—e™*)do, (29)

where u — coefficient of light absorption, d — path of light ray travel in the crystal,
W’ — energy absorbed by the crystal, o — solid angle.
The remainder, ie.

oH _, —pd
AW = == TATx = To)e™do, (30)

will be lost. By integration of this quantity over the entire side surface of cylinder we get,

oH _, e ;
W = = T(Tr—Tp) T Rdgdz’. (31)
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W means here energy radiated from the crystal volume, z’ — axial coordinate being the
variable for integration, and ¢ — azimuth coordinate. Some geometrical consideration
Fig. 4 yield

d = VaR? sin? /2+(Z —z2)? (32)

B

Fig. 4. Geometrical sketch for determination of volumetric emission of heat energy in the crystal

After expressing of e " as a series we obtain integrals

dodz’
11 = J. d2 H (33)
dodz’ )
I, = nJ ~";~ , (34)
W i "
=" J dds. (35)

‘Not all of these integrals can be determined analytically. In. order. to gyaluate their
numerical value one has to determine the average values of crystal absorption..In con-
nection with thislet us consider the limits of integration. We known from'geometrical
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optics that with the angle of incidence o being such that sin.x = 1yn, a total internal
reflection occurs. We have thus to take into account only the rays falling on.-the crystal
surface at angles less than the one mentioned. The rays, for which sin o < 1/n, form at
the crystal surface a curve described by the formula

R*sin? gp4(2' —z)?

1
12 = < _ _ — . 36
S R (I—cos )+ (z—2)? K2 (36)

The maximum value of s occurs for ¢ = 7 and reads

b= e =] = (37)
= |Z zZ| = n2 _1
In turn for A =0 v
hE 1
Cos @ = —. (38)
n
Then we determine the average solid angle
-1 1
A4 arccos — 4 arccos —
aw,, = " Rh—, — 2 (39)
Y m 4R* 4 R’
and the average value of d
d,, = 2R. (40)
We obtain
1
A arccos —
w = 23— 2 exp(=2uR) (41)
= 2 av\+ R 0 4n R p U
So the constant @ from (23) eq}lals
A arccos —
oH _, n
a= T, 1+ — exp (—2uR) |. (42)
47 R

»

~ This value should be used for calculations of semi-transparent single crystals. Some
detailed numerical calculations show that the thermal field is subjected to considerable
changes due to volumetric radiation of energy by the solid phase [14].
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