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IRREVERSIBLE BEHAVIOUR OF A SIMPLE QUANTUM MODEL
IN. THE THERMODYNAMIC LIMIT
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The irreversible béhaviour of a simple Wigner-Weisskopf system in the thermodynamic
limit (of the form proposed by Stey and Gibberd) is investigated. The system exhibits irre-
versible behaviour in that the Boltzmann entropy increases monotonically with time and the
spectrum of created photons tends to the Lorentzian distribution.

It is well known that for systems described by the Hamiltonian having the discrete
spectrum the motion of the elements of the time evolution operator, due to the existence
of Poincaré recurrences, is quasi-periodic. However, certain limiting procedures, such as
the infinite-volume or thermodynamic limit, allow us to remove the oscillations to the
infinite future.

The problem of the temporal behaviour of various kinds of the Wigner-Weisskopf
models in the infinite-volume limit was widely discussed in the paper of Stey and Gibberd
[1]. These authors have shown that in order to avoid the non-unitarity of the evolution
operator of the infinite system a certain limiting procedure should be carried out. In this
work we have analyzed the behaviour of a simple infinite system obtained by this procedure.
We have computed the Boltzmann entropy and examined the time evolution of the number
of photons at different frequencies. The irreversible decay of the excited state leads to the
creation of a photon field with the Lorentzian spectrum.
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1. The model

Consider a model of Wigner-Weisskopf kind {2}, consisting of a two-level atom and
a photon field. The Hamiltonian has a form

v
H = |EYECE|+ ) [ndenl+ Ji Z (B> {nl+in)> <ED), ()

where |E) is the excited state of the atom, |n) is the state of a photon of the frequency »,
] can be regarded as the “length” of the system. We assume that the interaction ¥ does not
depend on the frequency 7. The vectors |E> and |n) form the complete orthonormal basis

| CEIEy =1, nln) =0dw, ,.
(Eln> = (nlEy =0, |Ey<E|+ Y [m><nl =1, )

and the Hamiltonian (1) conserves the number of particles, in the sense that the destruc-
tion of a photon excites the atom and the creation of a photon deexcites the atom. A transi-
tion between two distinct states |# and |m) can occur only by intervention of the state |E).

For the above system, Stey and Gibberd [1] have solved the energy-eigenvalue problem
and computed exactly the elements of the time evolution operator U(#) = exp (—itH):
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— o)™
B(t,a) = kle(—aq) k-t ) (=%

m=k-+1

and L{” is the generalized Laguerre polynomial. .

The motion of the elements of the evolution operator U(z, [) is quasi-periodic in time
and without a limit in an ordinary sense as ¢ — co. When one takes an infinite-volume or
thermodynamic limit, the exact quasi-periodic evolutions pass to decaying evolution.
This fact is associated with the appearance of a continuum part in the spectrum’ of the
Hamiltonian in the above limits [3, 4]: However, -when we take the / — oo limit of the
elements of U(z, /), the operator be(_ibmes non-iiﬁitary. Apart from this fact, the quasi-
periodic motion is displaced to the infinite'future, so-that we cannot analyze the long time
behaviour in this limit (see Appendix). These difficulties can be avoided if we first re-define
the states in such a way that a new state is

o) = (I=HV/2|ny
and then take the / —» oo limit. We_ ha\(_e
L ClEY =(Elwy=o,

(ol = 11718, ———> (0~ ). Q)

We .assume that the energy e, = pnl-t, ,
The 7 > oo limit is taken in the distributive sense [5], i. e., for functions f(_nnl“l)
we assume . .
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and it can be shown that U(r) remai_ijs unitary and |
T U=t v h <, ®
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2. Time evolution
The density matrix at the moment 7 is given by
o(t) = Z(1, to) olto), (1D
where Z(t, to) is the time evolution superoperator:
ZA = UAU*
for any‘ quantum mechan_ical operator A4, and
' Zogys = UwU:a-
When we assume that the initial density matrix of the system has the form
0upto) = 820 %> (12)

i. e., we have initially the excited atom in the photon vacuum, all the initial correlations
being equal to 0, we obtain:

op(t) = U0
0rall) = 0ap(t) = Ur(HU 5 5(D),
Qa)w’(t) = UwE(t)U:;'E(t)

We can apply these formulas for the computation of various dynamical properties of
the system. ' '
The entropy of the system can be defined as the Boltzmann entropy, Sg= —k Z'Qm 1N 0,405
o

or the Gibbs entropy, Sg = —k Tr(p In g). For systems described by the unitary evolu-
tion operators the Gibbs entropy has a constant value. The Boltzmann entropy for a system
described by the Hamiltonian (7) and with the initial conditions (12) has the form:

Sp= —k {2 In(l—e 24 e 2" [m 2m -2Vt

-E(t)

—2e" (2 In (1—e~ ") ch(V2)+2 Z k™ le ™t sh[VA(t— k)]

= —If J- dwcﬁs [(('O—Elt] = [V4t(w_E)z—]\)}\—ln (4nV25} ,
T 14 +(CO—E) /
lim S = k In (4nV?). 13)

We analyzed numericélly the time dependence of the Sp obtaining (for E = 0, V=1
the monotonic increase with time, without any. oscillations.
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When the excited state decays in time, the total number of photons increases respec-
tively. Instead of the total number of photons we can consider the proportional to it

quantity P(¢) = | dwo,,(t). Because Tr ¢ =1, we have

—oo

P(t) = 1—ogs(t) = 1—e-2V2ﬂ (14)

However, when we take into-account only the number of photons having the frequency w,
P, (1), we obtain a damped oscillatory behaviour around the equilibrium value of w:

P(0) = {aV[1+V Hw—E)*]} {1l 4+e 2 —2¢" " cos [(w=E)t]. (16)
For ¢+ = — oo we obtain the Lorentzian distribution of photons:
P,(0) = (a2 [+ V-4@=EPL. 17

The éxact solutions of various quantum models showing the irreVersibié'behaviour
were obtained explicitly by many authors (cf. . g. [6, 7]). However, it would be of interest
to investigate the asymptotic time behaviour of quantum systems in a more general way,
¢. g. by means of the asymptotic master equations. Fulinski and Kramarczyk [8] obtained
equilibrium in the double limit # - o, #, - —co (being the analogy of the equilibrium
solution (17)). The problem of constructing the asymptotic expansions for “master quanti-
ties” in the long time approximation remains open and will be the subject of further
investigations.

APPENDIX

If we take the infinite-volume limit of the matrix elements of U(t, /), their quasi-periodic
behaviour will be displaced in to the infinite future. However, if we investigate the behav-
iour -of these elements by taking simultaneously the ¢ — o and ['—- o hmlts we may
obtain various asymptotic values depending on re]atlons between ¢ and /.

We will analyze the asymptotic behaviour of UEE(I 0. For <21 all the Heav151de
functions vanish and Ugg(t, o) has the form (8).

The generalized Laguerre polynomials have an asymptotic form [9]

IM(x) = ™2 exp (x[2—1/4)x~ ™2 Vaymi2= 1% cos [2n2x — mf2(m —1/2)]
+0(m/n?=3/4), (mreal,x > 0). (A.1)

Thus
I (%) ~ cos [2(n—1)"2x=3n/4] exp (x/2)x ¥4 (n—D'*,  x =2V*(t-2nD). (A2)

The term
n~ Y2 exp [ —iE(t—2nl)] cos [2(n—1)"/>x —3n/4]
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-in (3) is finite, as the product of trigonometric functions, so it is sufficient to analyze the
behaviour of :

o0

N 1/4;": g
K, 1) = vzvx”“ (—'LSL . (A.3)

n=1

= For n:= 1 andfor x = 0, K(t,1) = 0, Thus K(¢,{) =0 only for +—4l > 0,1, e: t >.4[.

For n =2 and x > 0 either t—4/ — ¢ (constant value, finite) or t—4/ — %+ oo.
In the first case we can obtaln the finite value of K(z,0) (¢,1 - o0). In the second case
the limit of K(z,1) does mnot exist (f—4] — o) or is equal “to- 0 (t—41 - —o0).
If for n > 2 x # 0, K(,]) will be divergent.

From the above analysis we can draw following conclusions:

For ¢,1 - oo the first term of the series (A.3) vanishes. The second term can be fi-
nite — in that case all the foilowmg terms ate equal to 0. When a term of order greater
than 2 is. finite, all the preceding terms are infinite and all the following terms are equal
to O. ,

For systems which for long times expand linearly in time,

I=1/4t—c(c >0), (A4
the element UEE(t ) has an asymptot1c form :
(t l) - e—(zE+V2)t+ Vzce—(1E+V2)c - ) (A4)
7>,
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