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INVESTIGATION OF THE LONGITUDINAL RELAXATION
PROCESSES IN THE HYPERFINE STATES OF THE OPTICALLY
PUMPED ALKALI METAL VAPOUR

By S. EEGowskr AND P. RUDECKI
Institute of Physics, N. Copernicus University, Torun*
( Received June 18, 1976)

The longitudinal relaxation process of alkali atoms in the hyperfine states was investi-
gated by means of a modification of the method observing transient effects in magnetic
resonance. The contribution of processes like Zeeman relaxation, hyperfine relaxation, spin
exchange and diffusion were measured. It is shown for the first time that it is possible to
observe one single diffusion mode.

1. Introduction

Previous methods of investigating the relaxation processes of alkali atoms in the
ground state consisted in observing the decays of the observables S, and ST which totally
describe the relaxation process [1], [2]. This leads to the development of different tech-
niques of measurements [3-6] as well as methods of pumping alkali atoms in different
hyperfine states [7, 8].

In the paper we will concern ourselves with the longitudinal relaxation processes
of atoms in hyperfine states and we will describe an experiment that allows us to determine
different contributions to the relaxation of the longitudinal electron polarization S, ()4
and {S,(t))_ in the two hyperfine states F. = I+1/2 and F_ = I-1]2.

Investigation of the relaxation processes of an optically pumped alkali metal vapour
for atoms in a given hyperfine state has become possible through a modification of the
method of observing transiet effects in magnetic resonance [91.

The investigation of the decay 'of the orientation in darkness of the hyperfine states
allows us to obtain information concerning the contributions of different processes (like
Zeeman relaxation, hyperfine relaxation, and spin exchange processes) to the relaxation.
The modified method will be presented in Section 2. In Section 3 of this work equations
will be given that describe the time evolution of the longitudinal electron polarization for

* Address: Instytut Fizyki, Uniwersytet M. Kopernika, Grudziadzka 5/7, 87-100 Torun, Poland.
(761)



762

a small initial orientation of the system. The interactions between the alkali atoms and
buffer gas atoms as well as exchange interactions are described in a way analogous to
that of Gibbs [10]. These equations also contain the relaxation processes at the walls of
the bulb. Such a process in the presence of a buffer gas is connected with the diffusion of
optically oriented atoms to the walls. Assuming a similar space distribution of optically
oriented cesium atoms in both hyperfine ground states, analytical solutions of the equa-
tions are obtained in the form of two infinite series of exponential functions. Choosing
the proper geometry of the detection beam, according to our previous theoretical consider-
ations [11], the evolution of the relaxation process can be well approximated by a two-
exponential decay curve, which can be taken as the first diffusion mode. The decay con-
stants of the polarization of the hyperfine states can be expressed as linear combinations
of the relaxation times: nuclear relaxation time T,, hyperfine relaxation time T, and
exchange relaxation time 7, as well as the diffusion coefficient.

The present work is the first experimental verification (for cesium with neon as a
buffer gas in a spherical cell) that it is really possible to observe only one diffusion mode as
was predicted theoretically [11]. Results of these experiments as well as of investigations
of the relaxation processes for cesium atoms in the two hyperfine states are shown in
Section 4. Although the qualitative agreement of the experimental results with theoretical
prediction is good, further investigation is required to verify the influence of other relax-
ation processes as well as the assumed character of the signal.

2. Experiment

Investigations of the longitudinal relaxation process for alkali atoms in the hyperfine
states have been carried out according to the method described previously [9]. The main
idea of this method was to separate Zeeman resonances in the two hyperfine states even
in weak magnetic fields H,. This separation is possible because the gyromagnetic ratio
of the levels has different signs and values (for example for Cs the difference in frequencies
is about 1100 Hz/Oe):

yS o
H,. 1
a1 o 1)

Wo = yp, Hy = +

For this reason a proper rotating rf-field induces resonance effects only in one hyperfine
state.

To explain the method of investigation let us introduce a spin system which can be
described by the Bell and Bloom equations [12]. Thus we study a spin system in which the
magnetic moment in the direction of the constant magnetic field has been induced by the
optical pumping process. This system is interacting with a pulse of the rotating rf-field of
resonance frequency @, = ypiﬁo. In the frame rotating with the frequency @, around
the z-axis (X'Y'Z; &30), the magnetic moment of the atomic system will start to rotate in
the Y'Z plane at the moment the rf pulse is switched on (Fig. 1). The rotating frame was
choosen in such a way that the z-axis was defined by the direction of the constant magnetic
field H, and the rotation coincided with the vector A 1.
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At the same time in the laboratory frame A7 will precess about H,, with the frequency
@. At resonance, for |yp, [H;T; = ©;T; <1 and o, T, <1 the projection of M on the
direction perpendicular to the z-axis is given by the formula [13]:

M, = M,q exp {—1/7*} sin @, cos wt, )
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Fig. 1
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The maximum amplitude of the envelope of this curve has a value
M/(T/4) = M,, exp {—T[47*}, )

where T = 2n/w,. So when T < 7%, M, = M,,. By measuring the y-component of the
magnetization M we can determine at any time the value of the longitudinal magnetiza-
tion.

In general, an atomic system possessing hyperfine structure cannot be described as
simply as above. The quantum-mechanical theory predicts that for a spin system inter-
acting with a rf-field the output signal is determined by the expectation value of a moni-
toring operator Q [16] given by

. (@ =Tr(eQ), ®)
where ¢ satisfies the equation

do i
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# being the Hamiltonian of the spin system. Only for spin 1/2 are the equations for the
expectation value identical with the Bloch equations. For J > 1/2 we have to assume
homogeneous relaxation processes and apply an approximation in which expressions
will only include nondiagonal terms, involving oscillations at frequencies w,, to get Bloch
type equations. '

Hence for an optically pumped atomic vapour with hyperfine structure, relaxation
processes are not homogeneous and Bell-Bloom-Bloch equations cannot be applied.
However, since the choosen detection technique is characterized by an observation time T,
much shorter than the relaxation times, the types of the relaxation processes are unimpor-
tant. Then our atomic system can be treated as two sets of different atoms having different
angular momentum F, and F_ and different resonance frequencies. Therefore, we assume
that the evolution of the two sets of atoms is described by two systems of Bell-Bloom-Bloch
equations (in the presence of the rf fleld) only during the observation time 7, which
is much shorter than the relaxation time of the system.

The way of using this method to investigate the relaxation process for atoms in the
hyperfine states is shown in Fig. 2. We study the time evolution of the atomic system after

] Optical
Optical L
resonance PUMPIng
z-beam

Zeeman
resonance Rf

Detection ||‘

Signal x- beam .
U

Fig.2. Double resonance sequence of events
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t

the pumping light is turned off, at 7 = 0. After a variable time interval = an rf pulse, in
resonance with the investigated hyperfine Zeeman levels, is applied to the system and
we observe the signal of a second weak detection beam perpendicular to H,. The maximum
value of the amplitude of the signal is proportional to the actual value of the magnetic
-moment of the investigated hyperfine state. Repeating this procedure for different values
of 7 one can get a decay curve of the longitudinal polarization of the atomic system in the
tested hyperfine state. ,

In an experiment thus carried out (besides the conditions mentioned previously and
conditions which must be satisfied by the detection beam [4]) one has to be very careful,
that the initial conditions from which the atomic system starts to relax in the darkness are
always the same. For the observation of the resonances in two groups of atoms in different
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hyperfine states whose frequencies lie near each other, the separation of the signals coming
from both groups wil be most important.

A block diagram of our pulsed magnetooptical double-resonance apparatus is pre-
sented in Fig. 3. The constant magnetic field H, was produced by a set of two pairs of coils.
This assured a homogeneity of the order of 10-* in a volume 0.5 dm3. The earths magnetic
field in the perpendicular directions were compensated very accurately by similar sets of
coils. Two lamps of the Varian type [26] were used as sources of resonance radiation L,

La
it %1;/4 :
!
i _Ho
S p
1 -
Ly | F Ale
L — o

Fig. 3. The block diagram of the experimental apparatus. Ly — pumping lamp, Lg — detection lamp,

S — mechanical shutter, F— interference filter, A/4 — quarter wave plate, P — polarizer, PM — photo-

multiplier, RfG —radio frequency generator, PS — phase shifter, SPG — square pulse generator,
CRO — oscilloscope

and L, The detection system contained a photomultiplier PM type MI2 F35 “Zeiss”
connected to a selective amplifier tuned in a wide band of frequencies. The signal was dis-
played on an oscilloscope screen and photographed. A mechanical shutter was operated
periodically by an electric motor. The closing time of the shutter was less than 10 ms.
The 1f pulses with an amplitude of the order of a few mOe were supplied by a gated con-
tinuously operating rf generator. The square pulse generator of variable width was supple-
mented with means for variably delayed triggering. The oscilloscope as well as the pulse
generator was triggered by the mechanical shutter. The apparatus was arranged in such
a way that after a sequence of about 10 pulses for a given time interval 7, the delay time of
the pulse was changed automatically to a new value. This has been achieved by employing
a synchronous motor to drive the delay potentiometer in the square pulse generator. The
repetition of the pulses for the same time interval T was used to average different types of
fluctuations. The rotating rf-field which was applied to separate completely the studied
resonances, was formed by a phase shift system PS combined with an amplifier. This system
converted the rf pulse into two pulses of the same amplitude shifted by n/2 in phase.
These pulses supplied two pairs of coils perpendicular to each other. The observed signals
are shown in Fig. 4.
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3. Rarte equations for relaxation processes

In this section a crude theory is used to derive expressions describing the time evolu-
tion of the longitudinal electron polarization for atoms in both hyperfine states when
they relax in darkness. In the investigated atomic system, relaxation usually involves the
following mechanisms: it is induced by collisions with rare gas atoms as well as with alkali
atoms and by collisions with the walls after diffusion through the buffer gas.

3.1. Relaxation processes induced by alkali-atom-buffer-gas-atom

The analysis of relaxation caused by collisions with rare gas atoms suggest that this
process is due to a perturbation that varies randomly in time [1, 17, 21]. The rate equa-
tions which are used describe the evolution of the ground state electronic spin polariza-
tions <S,>+ and <S,>_ of an alkali-metal vapour subject to relaxation processes induced
by the alkali-atom-rare-gas-atom collisions are derived in a straight forward way [10],

) 1 2P 141 1 2I+1)(2I+3) 1
SO = (S~ S (S, — — — (8>
< z>+ T1< z>+ (21+1)2 T£< >+ (21+1)2 T1,< >
1 IQI-1) 1 217 +3I+2 1
Sy = — (S — == — m T T (S,
< z> T1 < z,> . (21+1)2 Tl, z (21+1)2 T1I < z>+ (7)
where
1 Jop)—J(4w 1
1 _ JHen=J -), — = J(AW). (8)

T, I +1)?

wyp and AW are, respectively, the Zeeman and hyperfine energy level separations of the
alkali atom in the ground state. J(wp) and J(4 W) are the spectral density functions of the
randomly oriented magnetic field which are the Fourier transforms of the correlation
functions [22]. [ is the nuclear spin.

If the interaction can be characterized by a single correlation time 7,, the spectral
density function is of the form

Ty

21,

J(w) ~ . :
(@) 'v1+cu21:§

®
The usually introduced time constants T, and T, [1, 4, 18] which characterize the longi-
tudinal relaxation process are related to T; and 7| by
o1 4 1 1 1 N 2 1 10)
L LT non ey (
For convenience the following relaxation times are introduced:
I J(op)
T, QI+1)*’
1
— = J(4W), 11
T, 4aw) (11)

which we will call the Zeeman and hyperfine relaxation times, respectively.
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3.2. Spin exchange between identical atoms

The effect of spin exchange collisions between alkali atoms which play the most impor-
tant role in optical pumping experiments, have been studied by many authors [23—25].
However in this case the time evolution of the electronic-spin polarization of alkali atoms.
in hyperfine levels of the ground state cannot be described by a single exponential function
only. In the limit of small pumping light intensity one can get an closed system of rate
equations. The small pumping light limit is achieved when the probability for an atom to
be in the state |FM) is slightly different from that in the thermal equilibrium,

1

- 48
Pru 22I+1) +OFry 12)

where Oy is a small deviation. The deviations should be so small that one can neglect
all but the linear terms in 8. This leads to the following rate equation for the spin ex-

change [10]:
2IQI-1) 1 3 2I+2)(21+3) i

= (S A
3020 +1)? T, 2% 320+1)° T,

SHt = S (13)

where T, is the spin exchange relaxation time.

3.3. Relaxation on the walls after diffusion in the buffer gas

Because of the process of diffusion in the buffer gas, the expectation value of an observ-
able S, of the investigated atom is actually a function of time and position of the atom
in the cell <S,(, t)y. The average is taken over a volume large enough to contain a large
number of atoms and small enough to assure that the expectation value is constant over
that volume. In this case one gets the diffusion equation [20]

(8.6, Y2 = DACSAT, )+ (14)

with boundary conditions which depend on the nature of the walls. In our experiment the
walls of the cell were uncoated and we assume that every collision disorients the alkali
atom spin completly:

<Sz(r = R: t)>+ = <Sz(r = Ra t)>— = 05 (15)’
where R is the radius of the spherical resonance cell.

3.4. Relaxation undqr simultaneous effects

Since the above mentioned processes are independent, the corresponding relaxation
rates simply add. Therefore the time evolution of the longitudinal electronic spin polariza-
tion of the hyperfine states are as follows:

(S8,y+ = DALS, )+ —4X8. > =4S - (16)
(Soy- = DACS,y - —a-{S)-—BASD
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where
1 I 1 2I2I-1) 1
i L el ) an
T,  2I+1 T, ' 3QI+1)7° T,
A+)QI+3) (1 1
Bom TSl gz )
@2I+1) T, T

1 21%431+1 1 2(I+1)(2I+3) 1
T T i+ T 3Qi+n? T

@er-nr/1 1
== +: ),
CI+1)*\T, °T,
T, and T, are defined by Eq. (11).

This set of rate equations with the above mentioned boundary condition can be
solved by using the separation-of-variables technique if we assume that the spatial distribu-

Y

-_— —

Fig. 5

tions for atoms in both hyperfine states are proportional to each other. Taking into account
the symmetry introduced to the system by the pumping process one can write the most
general solutions (in spherical coordinates — Fig. 5) as:

@0

500 0% =S ey () L pcos o
{8, 8, 8)): = Z k+%(?>\ﬁ (cos 9)

k,m=0
x [a¥" exp (—Z¥"1) + b exp (— ZE")], (18)

where: P(cos ) is the Legendre polynomial of order k, J,, 3 is the Bessel function of
the order k+4, a" and bY" are determined by the initial conditions, Z" and Z&" are
decay constants given by

k\2o g 1 IT+1D+3 1 41(I+1) /1 1
Zy, = <&").+~ ot (B (+)< 2 )

Rl s s G Nl PRNCT
R) " m T am, Y sarvny T T aorne\T i)
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Fig. 4. Typical signals for cesium atoms in neon: a — decay of signals for the F, (4) hyperfine state, b — decay
of signals for the F_ (3) hyperfine state
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where
24I(I+1)+9 8QRI+ 1)1+ T/ Ty "
" [ T 4+ nFa +2T;/3Tex)2] 0
and p¥ are the roots of Ji,, (1) = 0. If we note that the signal is proportional to
St ‘f, {S,(r, 9, D) pdv (21

where V is this part of the cell through which the detection beam passes, thén in accor-
dance with our previous considerations [11] we need to take into account only the first
few terms for k£ = 0,1.

However, when the spatial distribution of the oriented atoms is symmetrical in rela-
tion to the plane $ = n/2 only the k = 0 terms will appear in the series and the shape
of the signal will be given by

S. ~ Y A% exp(—Z71)+B% exp (—Z31). (22)
m=0

The coefficients A% and B7 are determined by the initial conditions at ¢ = 0 and are pro-

portional to
. 0 1
JJ% (”?'j’r) N (23)
r
14

hence they change similarly and depend on the method of detection. This problem has
been thoroughly discussed in paper [11].

When the monitoring process is carried out with a low intensity beam travelling
through the central part of the cell (the radius of the beam r = 0.55 R) the signal can be
well approximated by the first term m = 0.

Choosing a proper method of observation we will be able to describe the relaxation
process by a two-exponential decay curve. The decay constants in the discussed case can
be expressed as follows:

2
{n 1 1 1
Z§’=D(—> e o P T

R 1 Ty s
2
S 7w 1 1 1
Zy=Dl—) + =+l = +2 > 24
2 (R>~+TZ+ 2,1,11'*‘.“2,1,ex 24)
where
4II+1D) (1 Fn)+1
)»1,2 = 2
2(2I+1)
41T+ 1D (A Fp+3
i (I+1)(AFn)+3 25)

C3QI+1)?
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The sign — refers to index 1, and sign + to index 2. Since # in a slowly varying function
of the ratio T,/T.,, so are factors 4, , and gy 5 too.

The dependerice of # on Th/ for dlﬁ‘ercnt values of the nuclear spin is shown in Ta-
ble 1. It is easy to see that if we' take =1 we will get a fairly good approximation.

TABLE I
NS
N 72 sz | 32
Th/Tex \ ‘
- - ;
-0 0.98413 0.97143 - 0.93333
1 , 1.00231 - 1,00474 - 1.01509
% . 104762 | 1.08571 | 1.20000

The solution obtained above is not the most general one, but it seems to us to be
‘better than the previous approx1mat10ns although there are Ccertain complications which
“arise due to the form of the decay constants (24). Here we have in mind the more troub-
lesome mathematical procedure which leads to the determination of the cross-sections for
different processes. We define these cross-sections as follows: '

0z = (TZU)"”)~1= Op = (Thv;-n)_.—%, P Oex = (TeerN)_I, (26)

where # and N are the numbers of the.atoms of the buffer gas and alkali atoms in 1 cm?,
v, and v, are the relative mean velocities of the interacting atoms respectively.

4. Experimental results

4.1. The contributions of different diffusion modes .

From the study in the preceding section, we see that under certain experimental
conditions we can observe only one term of the expansion (22) To verify this conclusion
we have investigated the dependence of the decay curve as a function of the radius of the
detection beam. The direction of the monitoring beam coincidences with the axis of sym-
metry of the system. When we restrict the analysis of the signal to only two diffusion
modes the decay curve will be described by four constants Z'{': and Z7 for m = 0.1.

The least squares method modified by Newton-Raphson has been used to approxi-
.mate the decay curves by a series of exponential functlons The decomposition of the

*decay curve into four exponentlal functions was not unique. For studying the relaxation
processes for atoms in the F, hyperfine state the coefficients B™ in the series expan-
sion were much smaller than 47 and the decay constants Z% much larger than Z7: So
the best representation of the experimental data is given by a two term expansion (22).

Using the experimental technique discussed in the:first section of this paper we have

made measurements for optically pumped Cs in Ne buffer at the temperature 25.5°C.
-Experimental data from the double-exponential fit are presented in Fig. 6 and 7. The
‘evaluated values of the diffusion coefficient. from these Mmeasurements is Dy = 0.22 cm? s~}
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Fig. 6. The dependence of the amplitude of: different diffusion modes as a function of the radius of the
detection beam. The amplitudes have been normalized to one for the radius of the detection beam equal
to R. The solid line is the predicted curve
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Fig. 7. Decay constant Z; for the F+ state plotted against the radius of the detection beam

for 30 Tr pressure of the buffer gas and D, =0.20 cm?s~* for 60 Tr are in good agreement
with previous valuations. However, the present experiment: does ‘not ensure that the preci-
sion of the measurement of the diffusion coefficient is high enough because of the small-
ness of the expansion constant of the term decaying with Z] and of the mcompleteness
of the series used for the description of the:decay curve.:
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In our experiment we observed single exponential decay for the detection beam of
the 1.2 R diameter which is slightly bigger than the calculated value. We believe that
this discrepancy can be caused by the scattered radiation from the walls of the bulb. In
further experiments the diameter of the detection beam was set to 1.2 R.

4.2. Measurements of the relaxation processes

Systematic measurements of relaxation processes for cesium atoms with neon as the
buffer gas were carried out under such experimental conditions that only one diffusion
mode was observed. The experimental data obtained for the buffer gas at pressures ranging

s Z;
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2l = 0F Ne

9t . o 30T e
F e 60T Ne
;78 o 100T-Ne
8/
8
5t /
4 = |
] P"-/'. e
3! s = i B
e
" 0

2 1
L ! e | ! Ner |
2 4 6 8 x10”enis

Fig. 8. Decay constant Z; plotted against Nv, for F, state

from 10 to 100 Tr neon and temperatures from 18°C to 40°C. The constant magnetic
field H o about 1.5 Oe was high enough to separate the two Zeeman hyperfine resonances
even for an oscillating rf field. For smaller fields &, one has to use rotating rf fields. Our
measurements are summarized in Fig. 8, 9 and 10. The decay curve for the F, hyperfine
state, was close to a single-exponential. However, the decay curve for the F_ hyperfine
state could be well fitted by two exponential functions. One of them, with a larger coefficient,
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is within the limits of error, the same as for F, hyperfine state. The other one has a coefficient
with opposite sign. When we take into account only the first two terms of the expansion (22)
the signal can be described by

Sy = A, exp (—Zt)+B. exp (—Z,t), @7
where the index m = 0 has been left out.

When strong electronic relaxation exists in the optically pumped (with D,c.. resonance
light) system, <S,(0)), is positive and <{S,(0)>_ negative. In such a case

Ay >B. >0, A_>0, B.<0

KSy (022
S
o7 02 03 04 05 06

Fig. 11. Plot of the ratlo of amplitudes of the exponential functions of the signal vs |<.S.(0)>— 1/1<S82(0)> 4
for different values of T4/Tey

and the ratio of the coefficients depends on the initial conditions and on T,/T. . (Fig. 11).
There is qualitative agreement of the experimental results with the assumed relaxatmn
model. It is revealed in

a.’equal values of the decay constants for both hyperfine states , and F_,

b. opposite signs of the coefficients of the “slow” and “fast” decay modes for F,

c. the linear dependence of the decay constant Z, on the density of Cs in the bulb.

For the F, state the observed decay .curve is a single exponential and the coefficient
of the fast decay mode could not be determined, because of the imperfections in
the measuring system, especially due to the fairly long closing time of the mechanical
shutter. '

After determining the fast and slow decay components of the decay curve one can
calculate the cross-sections ¢,, o, and g, by making use of the least squares method
with a simultaneous iteration procedure for the ratio T,/T.,. We have taken advantage
of the single exponential approximation for the determination of the initial values of O
and o, for the iteration procedure.

The pressure of cesium vapour has been determined using the formulas given by
Taylor and Langmuir [28]. /



775

For the diffusion coefficient of cesium in neon buffer gas the following temperature
dependence has been assumed

D, = AT"®. (28)

The best fits to the experimental data were achieved when an additional term No'v,,
depending on the pressure of the cesium vapour was added to the rate constant Z,. This
is shown in Fig. 8, 9 and 10, where the solid lines give the best fits. Our numerical data
together with earlier measurements are summarized in Table II. Our present measurements

TABLE 1
Do 0.15+0.02 cm?s™! 0°C this work B
0.15 Ernst, Strumia [7]
0.24 26°C Legowski [29]
0.40 44°C Franz, Liischer [30]
0.198 Bylicki, ¥e¢gowski [31]
0.153 Beverini et al. [33]
Oy 5.2+0.55 x 10-24 ¢m? this work
on 7.5+1.0 x10-2 cm?® this work
9.0 x 10723 Ernst, Strumia [7]
Oex 1.5+0.25x 10~* cm? this work
2.2 X 1074 ¢m? Ernst, Strumia [7]
2.4 x 10~* cm? Bouchiat et al. [4]
2.06 x 10~* cm? Ressler et al. [32]
o 2.3+1.2 x1071% cm? this work
On 6.4+0.6 x 10724 cm? this work
5.3 x 10~24 Franz, Lischer [30]
8.4 x 10-24 Yegowski [29]
Ge 7.9+1.0 x10-2% cm? this work

of the diffusion coefficient agree quite well with the results obtained.by Ernst, Strumia,
Beverini, Minguzzi, Bylicki and Yfegowski. The remaining data are outside the limits of
error and show a faster increase with temperature than the power 1.8.

The cross-sections o, and o, can be compared with the results of Ernst, Strumia,
Franz Liischer and Tegowski. The agreement seems to be fairly good. However, for the
fast collisions the ratio 7,7y should be of the order of (2/+1)* which is not observed
in the present case. It does not seem likely that the formation of the Van der Waals
molecules Cs—Ne contributes to the relaxation process because of the smallness of the
dissociation energy of Cs—Ne molecule. It seems to us that it is rather the interaction
of polarized Cs atoms with molecules Cs, that contributes to the measured relaxation
rates. Here we have in mind the exchange processes of cesium atoms as well as the dissocia-
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tion of Cs, molecules in collisions with buffer gas atoms [34]. All these are processes
destroying the nuclear polarization of the system and changing mainly the nuclear relaxa-~
tion time T,

Our present measurement of the exchange cross-section o, differs from the values
determined by other authors. The major disagreement lies in the determination of the
pressure of cesium vapour. It has been observed that the vapour pressure depends very
strongly on the buffer gas pressure [35] and decreases with an increase of the buffer gas
pressure. Therefore the effective cross-section in the whole range of buffer gas pressure
is lowered. Because of the low accuracy with which the relaxation rate 7, was determined,
it was impossible to take into account the last effect.
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