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OF HIGHER HARMONICS AND SUBHARMONICS
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Using the power series solution of the Heisenberg—Langevin equations as well as the
iterative solution of the generalized Fokker-Planck equation we study the statistical proper-
ties of higher harmonics and subharmonics generated in an optical non-linear process. A combi-
ned method using the Laplace transformation and integration by parts is proposed to solve
the Heisenberg-Langevin equations, which provides a fuller description of the lossy mechanism
in single iterations and the power series solution follows as a special case, In the approxima-
tions used the quantum statistics is described by the superposition of coherent and chaotic
fields. While in the higher-harmonics generation the pumping radiation is getting noise and
higher harmonics have a tendency to the coherent, in the subharmonics generation the
pumping radiation has tendency to be coherent and the subharmonics are getting the noise.
Some qualitative differences between the second and higher subharmonics are found. Both
the above approaches are found to be equivalent up to the second iteration although the
generalized Fokker-Planck equation approach provides a more compact solution. Making
use of the phase diffusion model of laser light, it is shown that the spectrum of the k-th
harmonic is k2 broader than that of the pumping radiation while the spectrum of the k-th
subharmonic is k&2 narrower.

1. Introduction

In the present paper we deal with the quantum statistical properties of higher harmoni-
cally and subharmonically generated radiation with special attention to the generation
of the second harmonic and subharmonic. This paper can be considered as a continuation
of papers [1,2]. We adopt both the Heisenberg (the Heisenberg-Langevin equations,
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quantum characteristic functions and quasi-distributions) and Schrédinger (geénerilized
Fokker-Planck equation) approaches. We show that ‘the solution of the Heisenberg-
Langevin equations (the lossy mechanism is taken into account in the msual quantum
mechanical way) in powers of the interaction time ¢ = z/c (z being the distance travelled
in the active medium and ¢ light velocity in the medium) corresponds to the iterative
solution of the generalized Fokker-Planck equation. Further we propose a new method
for solving the Heisenberg-Langevin equations based on combining the Laplace transform
method and integration by parts. It provides full reservoir contribution in an approximate
solution and the power series solution follows as a special case. The method is completely
described in [3]. As has been shown in [1, 2], in the higher-harmonics generation process
the pumping radiation is getting quantum noise while generated higher harmonics have
a tendency to be coherent. We show here on the contrary that for the generation of sub-
harmonics the pumping radiation has a tendency to be coherent while subharmonics are
getting the quantum noise similarly as in the case of a general scattering process (param-
etric amplification process) discussed in [1,2]. In this case there is some qualitative
difference between the second and higher order phenomena as has been also found in [4].
Finally, making use of the realistic diffusion phase model of laser light we show that if
the pumping radiation has a Lorentzian spectrum of halfwidth I';, then the halfwidth
of the spectrum of the k-th harmonic is k%I"; (this has been obtained for k = 2 in [5]
through a calculation of the Glauber-Sudarshan quasi-distribution) while the halfwidth
of the spectrum of the k-th subharmonic is I',/k2. In the first case we have an example
of a fully coherent field with an. arbitrary spectral composition which is non-stationary,
in the second case we have an example of noise field with improving second-order coherence.

2. Heisenberg-Langevin approach
The above non-linear optical processes are described by the Hamiltonian
H = hwlafa‘l+hw2a;a2+hga’{a2++hg*q£”‘a2, k>2, 2.1

where #i is the Planck constant divided by 27, w, and w, are frequencies of the pumping
radiation (k-th subharmonic) mode 1 and k-th harmonic (pumping radiation) mode 2,
respectively, g is a coupling constant and a; and a;“ are the annihilation and creation
operators of a photon in the j-th mode (j = 1, 2) respectively. The resonance frequency
condition

ko, = w, 2.2)

is assumed.
The lossy mechanism is described by the Hamiltonian

2 ge o !
zl Y. (hpPbP* b+ hicaf b + hicka b, C(2.3)
=

where 9 is the frequency of the reservoir mode I coupled to the radiation mode j, x
are coupling constants between the radiation and the reservoir described by boson annl-
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hilation and creation operators b and b{" respectively (rotatmg terms considered e.g.
in [1-3] are not taken into account ‘here).

The usual procedure of the elimination of the reservoir vanables in the Heisenberg
equations for a; [6, 1 2] leads .to the Heisenberg- Langevm equatlons

= —(iw, +71/2)a; —ikg*al* tay+ Ly,
Gy = —(ioy+7,/Day—igai + Ly, (24
where the Langevin forces L; are determined by
Lj=—i ; Kb exp (—ip1); | 2%

here b{) are the initial values of the reservoir operators and y; are the damping constants.
The forces (2.4) fulfill the following conditions

S LLSOLLEYY = ynapde—=1),  KLiO> =0, (2.6)
where the average is taken over the reservoir variables b which are assumed to be Gaussian,
Giagy = BB,

The equations (2.4) are solved in such a way that the Laplace transformation of
(2.4) is taken and the Laplace transforms of non-linear terms —ikg*ai* ‘a, and — lgcz1
are modified by the integration by parts where (2.4) is used again in the correspondmg

terms. Continuing successively this procedure we are able to obtain a solution up to
arbitrary powers of g [3]. Making use of two steps one finds [3]

ay(f) = exp (—iwt—71[2) [‘11"kg*G11(t)a+k la,
+k|g*G5(®) [af, a:k_l]a;az—kIgIZG(Z)(t)a+k tdf+ z w RN,
ay(t) = exp (—imt—7,1/2) [az—ingl(t)a1

~ 18176550 [a} af*Jaz + ¥ waRP(0), @7

where a; are the initial values of the corresponding operators, the identity

-1 k—1
[a a“‘]—k z aa“‘ lal 1- J_l._zoa-Hl 1a+k 1-i (28)

has been used and

1
G = (1) (1 —exp (—T2,,10),

_2’

1 1
(1)(0 [T(l) (1_exp( sz 4,2t))
—2 1

2k—4,2

1
L o]
k—2,1 ;
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1
(2)(t) (1) l: ) (1 —&Xp (_Fg}c)——Z,Ot))
2,1 F

k 2k-2,0

1
F(l) (CXp(—F(l) lt) exp( F2k 200)]’
k,—1

1
G21(t) (2) (1 exp( Fl(czllt))s

k—l

1 1
G = @ I:F(zi) o (L—exp (—T'Y)_, 01))

1 :
—ay— (exp (=L ) —exp (=I'$, 0) |,
F e 2,1

Rfj)(t) - (1—exp [— l(wm —w)+ )’j/z]t),

i(p —w;)—y,/2
wy = —ix;b, (2.9)

where I' are some compound damping constants, e.g. I'2, | = (k—1)y,/2+7,/2, re
= kyy/2, T = (ky;—7,)/2, etc. and the quantities G describe the damping of the
J-th term in the m-th degree of decomposition for the /-th mode. The quantities R describe
the losses of the j-th mode. Those terms containing the commutators in (2.7) are typically

quantum ones.
For the second order process we obtain by putting k = 2

ay(t) = exp (—iw t—y,t/2) [a, —2ig*Gy4(fay a,
+4|g|2G(112)(t)a1a;'a2—2]g[2G(122)(t)aILaf+ > WllRl(l)(t)]’
1
ay(t) = exp (—iw,t—y,t/2) [a, ‘ing1(t)af“2|g|26512)(t)
x(2a{ a,a,+a,)+ ; waRP(®)], (2.10)
where now

2
Gy1() = — (1 —exp (—y,t/2)),
Y2

. :
Gi2(D = 2 [1+exp (—7,0) =2 exp (—7,1/2)],

2

1
G = 2[ (1—exp (—y,8))— -—-—/2(eXp(—J’zt/2)—eXP(—?1t))],

1
Gp() = — (1—exp [~(y;—72/2)1]),

=72/2

“’(l)- [ (I—exp (- )’It))_"(exp( V1+72/2)t—exp (- ylt))] 2.11)

—72/2
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Performing the decomposition of the functions G with respect to £ up to t2(G1,(t)
= 1= 12[(k—2)1/2+72/2)2, G() = GR(t) = GE3(t) = 172, G14(t) = t—17(ky, —72)/4)
and substituting RO(t) ~ t (ie. v{? = o; is applied in (2.9); the term with ¢> cannot
give any contribution to the characteristic function calculated up to 22 since (bf”} = 0),
we obtain the power series solution [1, 2]

a,(t) = exp (—iw,t—7y:t/2) {al —ikg*tai* la,+ Lyt

t? _ -
b 2 [P a1 Jafas —Kiglai ik T, 07 )]

. . t2 .
a,(f) = exp (—iwyt—7,t/2) {az—lgta’{+L2t— 5 [lgl*[a}, afk]az—lgl":‘flla'i]} 5

(2.12)

where I’ ,(,1_)2’1 and I f)_l are given above and L; = L;(0). Note that in [3] more general
expressions containing the above mentioned rotating terms have been given.
Using (2.7) and the identity

;IKjlllegj)lz = exp (y;H)—1, (2.13)

which can be derived by substituting the integral over 9 for the above sum and making
use of the residuum theorem, we can prove that [a;(?), ai ()] = &, etc. (we have assumed
7, & 7, & y for simplicity). If the power series solution (2.12) is used for the calculation
of the commutators, then the exponential function exp (—7v;t) arising from the damping
factors in (2.12) is only compensated by the quantity exp (y;t?) arising from the terms.
L;tand it is +2 < ¢ since ¢ < 1. This is a consequence of the fact that in (2.12) the uniform
reservoir spectrum (yp ~ ;) is assumed while in (2.7) the correct reservoir spectrum
included in RY(t) is taken into account, i.e. it is correctly assumed that contributions
of single reservoir oscillators to the resulting reservoir term are dependent on the frequency
difference {” —w;.
The normal quantum characteristic function for separate modes,

Co (B 1) = <exp (B;a; (1)) exp (= Bja D)), (2.14)

(B; is a complex parameter and the brackets mean the average over the initial complex
amplitudes o;, which are eigenvalues of ¢; in the coherent state la;>, and over the reservoir
variables), can be written, performing the average over the reservoir variables, decomposing
the exponential functions and conserving terms up to the second order in f; (strong
field approximation) and using the Glauber-Sudarshan  representation of the density
matrix at ¢ = 0, in the usual form [1-3]

C (B, 1) = <exp [Bf(®)— BFos()—Bi(1) 1B, + Cj(0B;/2+C 0BT 2], (2.152)
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corresponding to' the Glauber-Sudarshan quasi-distribution (through the:Fourier trans-
formation)

) ‘ B
b0 1) = (RKI(0)" <exp[ 81 a0
Ci®) (2;—a ()’ +c.c\
+ SR ]> (2.15b)

this describes the superposition of signal a;(f) and noise Kj(r) = BJ?(t)—ICj(z‘)]2 with
correlated real and imaginary parts of the complex amplitude o; and the brackets mean
here the average over the initial complex amplitudes o;. Here

ay(t) = oy, ax| AN ay (1) |ay, 0,) = exp (—iw t—7,/2)

X {“1—lké*t“*k Yoy + %Zv[lglz%Lli—l(—]%[z) lota|®
—klgl®a ot (1 + oy |?) + ikg* T2, ™ 1“2]},

4y(8) = <oy, oy N ay(2) g, 0> = exp (—icw,t—7,1/2)

S ‘{“2—’8’0"; i ; [lgl*La(—loes| e, — Ig[zloq[z"czz—igf,(c,ziloc’{]} ,
By(1) = oy, ap| N af (Day(?) Jas, ;) = exp (~,0)
X {[allz—ikg*iocfkoc2+ikgtoc’{oc’2k+t2 ,:kzlgIZL?‘_l(—[allz)
X Jota]* 48]0t |2 L5~ o~ oty ]) lora |2 — Kl gl ¥y (s | + 1) + %gj {2, i,

ikg
2

By() = <oy, 0y N az (Hay(t) lots, 03> = exp (—y,1) (|g|2tzi°‘1]2k+ 72824Ng2)),
Ci() = oy, 03| N a3(8) |y, 0,) = exp (—2ico 1—7p,1)

— I, 10‘1“2J +79:1t <"a1>}

lgl*
k+1

— (ke —1) | gl %01 %} oty | > — 2k g P Lk F 1|ty 2+ 1) — k(K — 1) | g 2o 20k
'Hgl 0‘1Lk—1( Jory] )l“2|2 2k2 2 *Zk 2“2

.x{ 1—2ikg*tef* oy, — ik(k — 1) g*te ™ 20, + — l: 0o (—log)?) Jory)?

+2ikg* T2, 17 oty + ik(k— 1)g*I{D, sl 2062:,} ,

Ca(1) = <oy, 0y N a5(0) g, 0y = - g%t ¥ exp (=2iwyt—y,1), (2.16)
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where {n,;» is the mean number: of resérvoir oscillators coupled to the j-th radiation mode,
ey, o, Is the initial coherent state for the whole field composed of two modes, ./ denotes
the normal ordering operation in the initial operators:using the commutators and LF are

the Laguerre polynomials.
‘Using solutions (2.7) quite similarly, one obtains for ‘instance

ay(f) = exp (—iwyt—7y,1/2) {2, —igG, (o
—1gPGS2() [LY~ ot | 2oty — fory | 21},
By(t) = exp (—y21) 1g|*G31(0) |ty |2+ (1 —exp (=7,8) {Mazds

C(f) = —g°G31 (e exp (—2iwyt—7,0), (2.17)
etc.
For k = 2 we particularly have

ay(t) = exp (—iwt—v4t/2) {al —‘2ig*tafa2 + Lyt
i
+ \g|2t2(2a1a;a2—afaf)+ ) g*yztza;“az} :
ax(t) = exp (—iw,t—7,t/2) {az—igta’i+th—|glzt2
s i 2 2
x(2ay a;a,+a5)+ E g(ys —72/2)t 01} >
) R
o4(f) = exp (—iwt—y,t/2) {“1—2@*’“?“24‘ [glztz(zallazlz—“sf“i)+ 5 g*yztza’focz} )
. . . 2 2,2 2 2 i 2 2.2
a,(1) = exp (—iw,t—7,1[2) { oy —igtas — gt ( loty|“ay +05) + L3 gy, —y2/Dt7ay ¢ s
BA(t) = exp (740 [lauz+v2it<gafoc;“—g*af2a2>+21g|2t2(4xa112|«2|2

i .
—|°‘1|4+2l“2|2)+ E ')’th(g*“;n“z_g“%“§)+')’1t2<nd1>jl s
By(t) = exp (—7») (‘g|2t2]°‘1|4+72t2<"a2>),

C,(t) = exp (—2iwt—74t) {ocf—4ig*t|oc1|2a2—2ig*tot2—4g*2tzoc’fzoc§

2 L L 72
+ [g|2t2(4ocf|oc2|2—2|oc1|2af—ocf)+lg*yth[a1|2a2+lg* 2 tzofz} )

‘. Cz(t) ¥"—g'2t2a‘1’exp (—2iw,t—7,1). (2.18)
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Expressions (2.16) and (2.18) have been used in [1-3] to discuss the statistical properties
of the k-th harmonic putting «, = 0 (there are no k-th harmonic photons at ¢ = 0). For
incident coherent light (the brackets are omitted in (2.15a, b) in this case) we observe
that both the modes are generally getting the quantum noise proportionally to the
incident intensity with further addition of the reservoir noise. But neglecting the vacuum
contribution in mode 2, i.e. putting a, = 0 in (2.7), (2.10) and (2.12) we see that a,(t)
depends on the annihilation operator @; only while a,(¢) depends also on the creation
operator a; . Thus in this case, neglecting the reservoir contribution supporting generally
the noise component, the characteristic function (2.14) for mode 2 is already in the normal
order in the initial operators and mode 2 is in the coherent state loa(8)> and it shows
a tendency to be coherent. Mode 1, however, corresponding to the pumping radiation
is losing coherence proportionally to its intensity.

For the k-th subharmonic we put «; = O (there are no subharmonic photons at
t = 0) and we have from (2.16)

B(1) = exp (—v:1) (kk!|g|2tzl°‘2|2+7112<"41>),

By(1) = exp (—7,0)7,8° ),
2
Ci() = —exp (—2iwy —y,0)ik(k—1)g* <t— B3 FIEI—)Z,l) 204, 2,

C(H =0, . (2.19a)

where J; , is the Kronecker delta. Thus neglecting the reservoir contribution we observe
that the pumping radiation (mode 2) has a tendency to be coherent while the k-th sub-
harmonic (mode 1) is getting the quantum noise in the process of interaction similarly
as in the case of parametric processes [1, 2]. We also observe a qualitative difference in
behaviour of the subharmonics mode for k = 2 and k > 2 where C,(?) is missing. Similar
qualitative differences have been also found in [4].

Based on the non-power solution we similarly obtain

By(t) = kk!g]*G7 (1) [oa]® exp (= y18) + (1 —~exp (=9, 8) <ngyD,
By() = (1—exp (—y21)) {nyy),
Ci(1) = —ik(k—1)g*G ()25, , exp (—2iw 1 —y,1),
Cy(t) = 0. (2.19b)

3. Schridinger (generalized Fokker—Planck equation) approach

The generalized Fokker-Planck equation for the Glauber-Sudarshan quasi-distri-
bution related to normal ordering of field operators for the process under consideration
can be written in the usual way [6] in the following form

Py _

) 0
= 9| 5= 0124iw)ay + = (52 +iw,)a, | +c.c.
ot dar, Oa,
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+7:{n >——a2 +7:¢ >—a—2 +|i « 9O
n
Y181 arxlaa’f Y2lRg2 aoczaoc: 1801 o,

k

K\ ey O
—ig*Z(—l)’(j) He iy, —ad—{]ﬂ.c.} B4rs (3.1)

j=1

where the first four terms correspond to the equations of motion for two damped harmonic
oscillators, the fifth and sixth terms represent the reservoir contributions and the remaining
terms characterize the optical non-linear process and they are obtained from the equation
of motion for the density matrix g,

., e
ih ST [H, el (3.2)
if
1 k -+ stk
{E[hgalag_ +hg a; aj, Q] (3.3)

is transformed to the antinormal form and g-c-number correspondence of the coherent
state technique is applied (@) = ¢“"’(a — o, at — a¥)[n) [6, 7], i.e. one applies the

identities
a k
Dk = ofla,— —
i {< ) aat) 9}’

. k
e = {(ot-50) o
1

de + oe
,ol = —, , - 3.
[“2 Q] aa;- [Q az] da,’ 3.4

where «f denotes the antinormal ordering operation. It can be shown that the quasi-distri-
bution ¢ 4 exists in this case for the approximations used in [1 —3]. In the Markoff
approximation (3.1) can be written in the following form

0 ] 0
._?ﬁ = | — (y12+ iwy)oy + ——(y2/2+icoz)cx2] +cec.
ot ’ 60(1 a“z

> o* (1> o2 .z 0
t _ 4 n —_— | 180y —
AN 0cxlaa’f yaN 6oczaoc’§ 24 dory

d ' *
+ikgrat o, — — L gkl — Do %y — +c.c.} b 4 (3.5)
ooy 2 doty
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Particularly for £ = 2 .we obtain

0 B . 0 . ,
E{ = — [ 2+iwy)oy +2ig*oz°foc2] + = [(2/2+iws)o, + lg“%]jl
6t 6051 aaZ
9? 0 8
-+ c.C. +')’1<nd1> a ¥ +}’2<nd2> ——aazaa;e —ig*ocz aT“f' +C.C.} ¢Jy‘ (3.6)
oy

‘and performing the Fourier transformation,
) . . ‘
1 : . ) y
0ty 003, 1) = (n—z)—zfcm(ﬁl, Bas 1) ! I exp (B7o;—f,07)d*B;, (3.7
j=1

we have the equation for the normal characteristic function

acC i, 0
EJK {[( ?1/2'{“10’1)31 3. +( V2/2+1w2)ﬁ2 ﬁz]
0
+C.C. —71<”d1> P12 —y2ngp 182> + l:lg/’)1
B,
(i o? ;
- "
+ig*B, 6/3% g*pr 3B ] c.c} C (3.8)

This equation has been solved by means of iterations starting from the solution
with g = 0, i.c. from

2

CQ(By, By 1) = 1—[ exp [ —<ny;y (1—e™77) |ﬁj|2+ﬁj“fo(t)—ﬁ;‘“jo(t)],

ji=1
ajo(t) = o exp (—iw;t—y;t/2). (3.9)

The first iteration provides using moreover the method of characteristics together with
‘the assumption of small ¢

CH By, B2y 1) = exp {—<nay) (1—e™ ") B2 —<nynd (I1—e ™) [B,)?
+[B1of exp (—y,t/2+ i, )+ 2igth o ok exp (—y,t/2+ iw,t)
+ 205 exp (—7,1/2+iw,1) + ig*tBat? exp (=722 +iw,t)] —c.c.
+igthias exp (—y,t+2iw,f)+c.c.). (3.10)

It should be noted that no strong 1ntens1ty assumption is needed here in contrast to the
Heisenberg-Langevin method.
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Thus

o, (f) = exp (—iwt—71/2) (% —2ig*tata,),
(i) = exp (—imat—7st2) (22— igtod),
By(t) = <{ngpy (1—e™),

By(f) = {ngyy (1—e™),

Ci(t) = —2ig*to, exp (—2iw t—y;1),

C,(1) = 0. (3.11)

Comparing this with (2.18) we find that we have the identical evolution of the complex
‘amplitudes o,(f) up to the first order in gz. Further we observe that both .the modes are
statistically independent in this case. For B; and C; (3.11) provides more compact solutions.
without using the strong intensity approximation for calculation of the characteristic
function so the reservoir is described more fully. We also see that up to gt operators a.(t)
and a,(t) for a, = 0 (second harmonic generation case without the vacuum contribution)
are dependent only on annihilation operators and consequently B; depend on reservoir
properties in the above way only and C; = 0. For «; = 0 (second subharmonic generation
case) the expressions for B; and C; given in (2.19a) agree with those in (3.11), there is only
a difference in the reservoir contributions as discussed above. Similar results have been
obtained making the second iteration and they are in agreement with the results of Section 2.
Detailed discussion of the statistical properties of higher harmonics and subharmonics
based on a more compact solution of the Fokker—Planck equation is in preparation.

So we have the same conclusion that the pumping wave has a tendency to be coherent
(neglecting the reservoir contribution) and the second subharmonic is getting the physical
vacuum noise.

The question of the determination of the photocounting statistics corresponding to
the quasi-distribution of the form (2.15b) has been discussed in [8, 9].

4. Redalistic description of laser light

The above given description is rather idealized since it assumes two modes for the
incident and outgoing radiation. In order to describe the spectral structure of radiation
we may use the phase diffusion model {10, 11].

t
We consider w as a fluctuating quantity and substitute ot - wt+ [ dw(t)dt’
t ‘ 0
= wt+ @(t), where @(7) = [Aw(t'ydt" is a fluctuating phase related to the fluctuating
4]

part dw of the frequency. Assuming that do(t) = Y. ¢,@a(t) (g,(t) being an orthonormal
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set of real functions and ¢, Gaussian real random variables) is a Gaussian process, it
is well-known that (4w(0) = 0 is assumed)

(exp (1 (J; do()dr)y = ([ exp (—ic,h))

+o
2
ar | | J\ (\/E o“n)n1 exp(— _ic"o_lz" _ilncn) dcn = | | exp(——%a,f/l,f)

n

-~

= exp (=% [ ¥ o, (t)@,(t")di'dt") = exp (—%(J;f {do()do(t"))dtdt"),  (4.1)

<

t
where 4, = | @,(t)dt', o, is the standard deviation of ¢, and o} = {c?>. Further
0

assuming the Markoffian property of the process, {dw(t")dw(t"))> = 2D5(t’—1t""), D being
the diffusion constant of the phase fluctuations equal to the spectral halfwidth I’ , We
have for the radiation spectrum of a damped wave /T, exp (—iwot—ip(t)—y|t|/2) with
the diffusing phase ¢(z) .

+w

G(w) = +j'w {a™()a(0)) exp (—iwf)dt = I, | exp Li(wo —w)t
2I'+y

=Ty =

(4.2)

which is the Lorentzian spectrum. If the reservoir damping constant is negligible compared
to 2I', we see from(4.1) and (2.2) (w, = kw,, dw, = kAw,) that the spectral halfwidth
of the k-th harmonic is I', = k2I"; (I'y being the halfwidth of the pumping radiation), i.e.

or, 2(k’Iy)
SO ey = s oy &
as has been shown for k = 2 calculating the Glauber-Sudarshan quasi-probability
function in [5]. Thus the second-order spectrum of k-th harmonic is k2 broader than that
of the pumping radiation. Similarly the spectrum of the k-th subharmonic is k2 narrower
than that of the pumping radiation. In the first case we have an example of a non-stationary
field having a tendency to be coherent with an arbitrary spectral composition in the
second case we have an example of the field with increasing level of noise and improving
second-order temporal coherence (a chaotic field can be fully coherent in the second
order but not in higher orders).
Finally we note that higher-order terms with respect to # in (2.12) give spectral correc-
tions proportional to derivatives of (4.2) with respect to , while solutions (2.7) lead to
a sum of Lorentzian spectra.
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Note added in proof: Results obtained in Section 2 for mode 1 are related to
the used method of calculation of the characteristic function assuming rather strong
field. This excludes the so-called anticorrelation effect which has been found recently
[12, 13] and which can also follow from results of Section 3 if y; = {n;;> = 0 (from
(3.11) it holds that {ai’(1)ai(r)y—<ai(Nay(1)y* = =2 ig*tat 20, +2 igt ajo up to gt).
In this case ¢4 does not exist for mode 1 and quasi-distribution ¢, related to the
antinormal ordering should be adopted, By — B, +1.
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