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RENORMALIZED MAGNONS AND PHONONS IN A STRONGLY
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The Matsubara thermodynamic perturbation calculus is used to describe the effects
of coupling between spins and highly anharmonic lattice vibrations in a Heisenberg cubic
ferromagnet. The Hartree-Fock approximation is employed to derive the system of self-
consistent equations for the renormalized magnon and phonon average occupation numbers.
Derivations are also presented for the renormalized Helmholtz free energy and the magnetiza-
tion. It is shown that the spin-phonon interactions give rise to decrease of the spontaneous
magnetization. The results cbtained here are valid within a wide range of temperature (be-
tween absolute zero and the Curie point), wherein the rough harmonic theory of the lattice
dynamics completely fails.

1. Introduction

The spin-phonon coupling in a Heisenberg magnetic crystal arises from the modula-
tion of exchange integral by the thermal lattice vibrations, which vary the interatomic
distances. Hence the exchange integral as a function of the instantaneous positions of
atoms can be expanded formally in power series of the atom displacements from their
equilibrium positions. A standard approximation' truncates the series after the second-
order term (harmonic approximation). By means of various methods, the harmonic model
of the magnetic crystals has been studied intensively for thirty years, see e. g. [1-31]. This
simple model is well justified at low temperatures, when the atoms execute only small
oscillations about their rest positions. For cases, when the harmonicity. condition
is not satisfied, e. g. near the Curie point, it is necessary to take into account certain
anharmonic terms, too.

Recently, the anharmonic effects in ferromagnetic crystals have been considered in
several papers. Meissner [32] developed the method based on a functional-derivative
Green’s function approach combined with a cumulant technique. A variational calcula-~
tion investigating the anharmonic Ising lattice was used by Horner [33]. Among these
approaches, a special place is occupied by the self-consistent Green function theory pro-
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posed by Tyablikov and Konwent [34]. Their method was extensively developed and in
some details is exploited to this day [35].

In this paper, we have carried out an analysis of the strongly anharmonic Heisenberg
ferromagnetic lattice taking advantage of the renormalized spin-wave theory due to Sza-
niecki [36]. This theory is based on Matsubara’s formalism [37], which yields the per-
turbation expansion of the partition function in terms of the Feynman graphs. We have
restricted the calculations to the selected class of graphs, viz. to those deficient in the energy
denominators (Hartree-Fock approximation). On availing ourselves of this approximation
and having taken into consideration the anharmonicity effects of all orders, we have ob-
tained the renormalized free energy and reduced magnetization of a ferromagnet.

2. The Hamiltonian

Throughout this paper we consider, for simplicity, the cubic ferromagnetic crystal
consisting on N identical atoms. Moreover, we use the adiabatic approximation. The Hamil-
tonian under study is then

1 o il v, i il ==y
J j#k 7 TR

where P ;and s ; are the momentum and spin operators of an atom with the mass M at the
point j. The quantities UG —F%) and J(J 7—Fk) denote the interatomic potential energy and
exchange integral, respectlvely, which depend on the difference between a pair of instan-
taneous atom sites ] and k. Moreover, L = gugH with g belng Lande’s factor, pg-Bohr’s
magneton and H the external magnetic field applied along the z axis.

Let us make use of the Maleyev transformation [38]

S;‘ = S7+iS% —» \/QE a;‘.‘, » (2.2a)

J— 1
S; = §j—iS} - /28 (1— 5 a;“aj) aj, (2.2b)
S5 — —-S+aJaJ, (2.2¢)

where S is the atomic spin number and a’;, a; stand for the creation and annihilation
boson operators for spin deviation. Utilizing the spatial periodicity condition we resort
to the Fourier transformations

at = N~ zaje-if-f”, (2.3a)

a;j= N~ 1/22 o, e'» -: (2.3b)

JG-F) = N"1Y J,e% G, (2.3¢)
A

UG- =Ny Ut B, (2.3d)
i
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where 1 is the wave vector and of,ay, J;, U, are the Fourier components of
aj-‘, a;, J(_]’—k), U(j —k), respectively. The instantaneous atomic position vectors j and k
in Egs. (2.32)~(2.3d) may be written as

F=Jo43p & =lkotd 2.4

with & ; and Sk being the displacements of the atoms from their equilibrium positions fo
and %, respectively. We assume the atomic displacements and momenta in the conven-
tional form

L hoo. -
5j =. iN 1 z \/ZM(J)AS e}.s(éls'—éils)e . Jo’ (253)
As
= E ‘hMCO s - >
Pj = N_llz \/ 2 2 els(fls""éﬂ:ls)em.m? (25b)
As

where & and &, are the creation and annihilation operators for a phonon of wave vector
7, branch s and frequency ,,. The quantity ¢, is the polarization vector associated with
this phonon. As we assume the crystal lattice to be ‘monoatomic, the acoustic branches
appear only and the branch index is s =1, 2, 3.

If we now expand the exponents on the right-hand sides of Eqs. (2.32) — (2.3d) in
power series of displacements 5 ; given by (2.52), and make use of (2.2a) — (2.2c) and
(2.5b), we obtain at last the Hamiltonian (2.1) in the form (for more details see [S])

H = Egt+ H#PO+HP+H O+ P+ + H(7, (2.6)
Ey =3 NUy—3 NJoS?+1 Y hays, 2.7
7
yfgl) = ghwzsfi‘sfn (2.8)
HP = ;(L‘Fsz)“j%a 2.9)
yffl) — Z Z Z @lml,...,lnSnA(zl_l_ +in) H (élm_éﬁlisi): (210)
n=3 A1851 AnSn i=1
HED = 3 N7V Thof 05 0% (2.11)
Ago
R I I R
n=1 g Ai151 AnSn

xoag [] G E% s (2.12)

HD =Y TV LY O A=~ A+ . )

n=1 gouv Aisi AnSn

X OC:OC:OCuOCv 1—,{1 (é}.isi g éﬂilis,-)’ (213)
i=
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where
&, = S(Jo—J3), (2.14)
Tgo = It dasoo—Jira—J 1y (2.15)
kmax
A181s ooy AnSn _ § ( 1)n+k - - >
@ = —-NM ( 5k"/2)k'( k)' f1+ +Zk,3()"1+ +/1k)_2
k=1
R =S
X ENMwml A+ 44 em,j’ > (2.16)
=1
djhsu s AnSn __ ( L
0o _ ( +8T75,,) 2W " (6—0) " €1
151
Emax k
E (= 1)n+k At et I l / h > -
+S (1 2 5kn/2)k'( k)l QO' i l:\ INMo w, ()'1+ +ﬂ'k) i elzst]
=1 151 s
Aoy e
X ZNM-WA,,.S,,, (o0—o+4i+ ... +/1k)-elmsm], (2.17)
m=k-+1 .
A1S1y ceey AnSn __ -1 (__1)" - —h T - |
¢, CNTRY %N —n!—(ri,-—v"'ru,—v) I I [\/2_]VM(O— (.u'I'V_Q_O-)'ehsl:I
1=1 =
kmax
( 1)n+k A= ..o —Ag c—i1— =
Z (1 2 k"/Z)kl( k)| ﬁ__v A +F[.l,—lvl lk)
. k —_—
X \/ 2 7 )¢
2NM hst( 1+ i k) elzsz]
1=1

n

i h + e o = .
X = - - -
| I |~\/2NMwAmsm (U+v—p—0c+i + ... +4p) elmsm:l’ (2.18)

m=k+1
]-’ k == n‘2,
5k,n/2 ol { !

0, k # n/2,
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with k.. defined as

K _nf2 for even n,
max T N(n—1)/2 for odd n,

and A(i) being unity when } = O (we restrict 7 to lie only inside the first Brillonin zone)
and zero otherwise. Thus, we see that the first term in (2.6) is a constant, the second and
third terms correspond to the free phonons and free magnons, respectively, the fourth
term describes the highly anharmonic phonon-phonon interactions, the fifth term is
responsible for magnon-magnon interactions. (Dyson’s interaction Hamiltonian), and the
remaining two terms in (2.6) result from the interactions between the magnons and
strongly anharmonic phonons. In the harmonic part #°§" of the Hamiltonian (2.6), the
branch index 3 appears only. Tt refers to the longitudinal acoustic mode, because the
contributions from the transversal modes would contradict momentum conservation.
According to this statement, the following equality ‘

(J,82=UPA* = Ma}s (2.19)

must hold. We have just utilized it while deriving (2.8).
Henceforth, we shall apply the approximation of nearest neighbours

I -0y, (2.20)
ya=Y e 2.21)
n

where 7 denotes the vectors reaching to all nearest neighbours.

3. Perturbation expansion and renormalization formulation

Let us first recall, in general terms, the thermodynamic perturbation formalism [37]
with due regard for our problem. As we deal with two different kinds of the boson quasi-
-particles (phonons and magnons) in the system discussed here, we define the set of
orthonormal states as follows

) = 0P, n) = [] TTIEH™ 4G9 ]
x T2 ™1 L0 107) (€RY

where |0™) and |0{’) are the magnon and s-branch phonon vacuum states, respectively.
By Egs. (2.6) — (2.18) and (3.1), the partition function can be written as

Z =Tr (e-ﬂ.;f’) = o BEo Z (nle*ﬂ(.#o+/t’1)|n)

— g BEo 1:[ 1’[ [1 __e"ﬁﬁm;.s]—l 1::[ [1 _e-ﬁ(L+az.)]—1<S(ﬁ)>o’ (3.2)
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with
S(B) = T exp [—j des#(7)], (3.3)
HT) = oA, ' (3.4)
Ho = HO+HP+ 4D, (3.5)
Hy= —HO+H O+ AP+ D+, (3.6)
H = A = Y, o, & 3.7
Ass=1,2

where, for the purpose of our calculations, we have formally included the term O in
the unperturbed Hamiltonian 2 ,, and we added it with the opposite sign (for correctness)
into the perturbed Hamiltonian #;. T denotes Wick’s ordering symbol. Using (3.2)
and (3.3), we get

Z = oxp[~fEo+ LIn(1+a)+ X In (147 + ¥ D,], 8)
As 2 =
with
;igg) = [eﬁﬁw;.s_l]—l, (39)
Eﬁm) — [eﬁ(L+a;.)_1]—1’ (3.10)
and
B I3 B
(=1)" ,
D, = o dt, § dz, ... dT,,<T[ﬂ1(11)WI(‘EZ) %I(T")]>oc, (3.11)
0 4] 0

where the subscript ¢ denotes that only connected diagrams have to be taken, as the
disconnected ones result exactly from the exponentiation. In order to apply Wick’s
theorem [39], we follow the treatment of Matsubara [37] and introduce the contractions

?Z"L(ri)lfz,.s,.(rj) = O31 P, TG, W) 10, G 4 1)], (3.122)
Mi}sj(fj) = 83,2055, FH TG, (0@ +1) 46,021, (3.12b)
Ffzi('”)jzjsj(f) = 5li,lj5si,8j_ﬁg.’;31’ (3.12¢)

fi.-(f)_l'éf,s,(f) = 83,1055+ 1), (3.12d)

2 ()%(T;) = 8,1 CTI[0, a 10, +1)], (3.12¢)
0Tt (1)) = g 0™ T IO, P+ 1) +6,,m ], (2.12f)

0y (D), (7) = 8,1, (3.12g)
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1 (EE) = 3, +1), (3.12h)

1, 7 > 1;
0,; = 0(r;—7;) = {0’ " 1:;.

With the aid of the following graphical interpretation

5 SfTil%, flg=3 A,s,(T" Sl -
i
gA,s f ZA (T) -;--4-—-'13_] g,\l. Si{T) §Ajs](f) z
¥*
oy (T Jotg (T;) T {ag (t)otg (1) Q
*
1) ('z’,-}oc?(‘rj) %—4&—%’_ aqh’)ﬁiah’) T

each term in D,, Eq. (3.11), can be represented diagrammatically.

Tn this paper, we neglect the graphs which have energy denominators, i.e. we confine
ourselves to the bubble diagrams (Hartree-Fock approximation), cf. [40, 41]. For this
purpose, we have to omit in Hamiltonian, Egs. (2.10), (2.12), (2.13), all the terms with » being
odd, as only the ones with even n can yield the graphs deficient in energy denominators.

Unfortunately, the Hartree-Fock approximation is not sufficiently exact for temper-
atures from immediate vicinity of the Curie point, see [40]. Thus, our considerations should
be extended to include some classes of the graphs which have energy denominators, see
for example [42], but in this case the numerical computations would become very intricate.
For this reason, here we refrain from examination of such classes of graphs.

We proceed now to carry out the summation of graphs and thereby to the renormali-
zation of magnons and phonons. For the sake of clarity, we denote the diagram of n-order
of the perturbational expansion by D /t-3in where the superscripts i, = 0, 1,2, 3,4
denote that the terms #{P from the perturbatxon Hamiitonian #;, Eq. (3.6), are taken
into account. The indices j, refer to the terms with §; = 1, 3, 4 and point out the anharmoni-
city orders of the components of #{.

To calculate the graphs we use (2.8) — (2.18), (2.20), (2.21), (3.1) — (3.12) and apply
Wick’s [39] and Thouless’ [43] theorems. The first-order graphs are drawn in F1g 1.
The respective expressions are

DV =B Y honP, (3.13)
A;s=1,2
D = L BNJy[N™' Y (1—x )n{"T?, (3.14)
e

and, by Egs. (A.1) — (A.5) given in Appendizx,

@ ou
L N ) s+ 4)
DM = 18 E hw,13(n%)+12—) [eNM; Ops --1], (3.15)

i
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o

3,
E DE=
—d

n=2

7;.)'

@W)3

JSh
M.

> b =~

T
ﬂJSh VA (n(p)+ l)eNMZ
M ZJ @3
7

Uw eus)

(n(p)+ l)eNM

1 _ 2
X [55 Nt Z (1 fxg)ném)] R

[4

@, s(p)+A)
} ; (- xg)n("’)

(3.16)

Zu_e“)_ (Hs(P) +4)

(3.17)

where, allowing for the symmetry of the three cubic lattices, we used the equality

F;,a = J’y}.(l —xg) (1 —xo)a
Valid on the average, with
xg = yg/ yO'
O ~
0@ 01@8

0 =
D‘i 2 \0.

P2 (3 o9 { %
o

0@

®

g

R ls vDF?'n)’\("\)'

T
‘e e s, 01(49")((%)

(3.18)

(3.19)

Fig. 1. Graphical representation of the first-order diagrams

The representative second-order graphs are plotted in Fig. 2. As an example, we
have written explicitely some of the simplest diagrams shown in Fig. 2

DYV =4p T (honmDG+D),

As=

DE? = 4 2775 ¥ (1= x A (e +1) [N X (L - x i T2,
e a

Dgl’";

L Z(hwls)zna‘?(na';’+1) {% .3 [(

AY

1,m)

(3.20)

(3.21)

)][ Zawkmﬂ
e NM P
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N]\;a)?' u3("(p)+2) (ﬂ ei.s) [(“‘):I [ Z(M &) (—51:)'*"1‘)] }

2 m—2 1
(T [ oy st
3 )2 m—4 E (F‘ evs) —(p) 5 ] } 3.22
X(Au els) [( 2 ):I [NM vs 2 ) ( )

,/f\\
N Y HP
21 -9 \ e
\Q/ i/ NI %
IA Y [ Y
DAY 1 (¢) 4 n) i
D(O’O)‘\: 3 0(0’1’")';\’[4 D(0:37ﬂ)#\ A D( 549 ﬁ\ A
h 4 A 4
. P
< ,z<\\ SN
{ &) { A 7 W
(N7 S/ A X{/ayV %4
1 A Y T Y
D(’v"v’r m)y ) D(1’n’3 my A D(;n:‘:mN A
\J 2 \ 2 :\)e‘l.
(%) (5 {5
Yot ‘ot N
Fga ,’I«\
\ "‘, J ‘\l’<\l,"
02(2 H 2) D (2 s 39") D (2 94"’)
e
L - R K,
£ & i, CEN
\&/ &) \G/ \&/

oY L&Y/ )
’Dfm i }20(3’"’3"")§ D(s,n,4,m)+\ gs,n;ti-.m)

L)Y /TN
{¥) {7) (%) )
‘\\: S Ny \\;‘/ e
2T N
N lI i\ \
' \
e s/
i
D@ﬂ»é«m)@ }2D (43"54’5")
kW) 2
/7 |\ 71 }
‘ ] / ) l‘\\‘?II,
\\sg/, PR

Fig. 2. Graphical representation of the second-order diagrams

The expression (3.22) can be easily summed up over # and m (to infinite anharmonic
orders) yielding

o0

> ¥ Dt =1 g Z(hwls)zﬁa‘;>(n;*;>+1)

n=4 m=4
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(l e, v)
B2 (ps(PY +4) 1
x <% 4 [e”MZ —1]+1 —- ho
{% & * NMa2, &

<R+ BN S

(ﬂ evs)
(nvs(l’) +3)
} (3.23)

In the similar way, we can continue our consideration concerning other diagrams, but
the procedure becomes very tedious and we refrain from adducing it here.

Taking into account successive orders of perturbational expansion, we can carry
out the summation of all bubble diagrams in the following manner

Z Z Z D(u,h,...,z,. bdn) — Z In (1+n(p))+ Z In (1+ (p))

n=1 i1jy injn

- Z In (1+7")+ Z In (14 40")~1 B Z haw,sasy

Y(m)
+B ) R0+ /3§ o7 (1 70)
As

Y(m) Y(m)
—B Z ho, PP y™ (1 25) —BNJy, [Y‘P’Y‘"‘) <1—- —S—) +1 (Y‘"”)Z], (3.24)
s

with
h (A2 -
aly = %{exp [W E w—;(n;ﬁ>+%)] —1}, (3.25)
ns
(2) 1 ~p) 4 1
Ay = NMO)%S u3(n + )(.u e).s) (a +2) ‘ (326)
u
ISy A2 T h NXOV(Arey)?
(1) x HS)  ra(p) 1
C = ex _ _ & + o 3.27
i3 Ma)% pLNM Z D (n,. » ( )
1S
2) _ ; {(3.28
Cas ] NMCO%S u3(n +'2") (:u e).s) 6”3, (8 )
I3
Y(m) ~1 Z (1 __xl)n(rn) (3_29),

s(m) __ (3 o 30)

ny = 'eli [L+u<1_ y(p))( Y(m))]

Z ha)“(n(”) + 2)05113)a (3.3D
7

Y® =
NJy,
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1
~(p)
A = e yeeNy (3.32)
Brwas Vars—cas¥YM (11— ——
e . [ A ( 285 )] -1
a; = (@R +1)6,5+a, (3.33)
Cis = €550, 3+ 53, (3.34)

where the tilde above n{™ and n{?) denotes that we are now dealing with the renormalized
magnon and phonon average occupation numbers.

We see that Egs. (3.25) — (3.32) together with the abbreviations (3.33) and (3.34)
represent the closed system of self-consistent equations with respect to the renormalized
average phonon and magnon occupation numbers which can be determined numerically
by the iteration procedure. However, these computations turn out to be by no means
easy and we postpone them to the subsequent paper.

4. Free energy and reduced magnetization

We are now able to derive the free energy of the phonon-magnon system. With the
help of Egs. (3.8) and (3.24), it can be easily verified that the free energy

F=—f'lnZ @1
assumes the form

F = E0+ Z h(}),l:;ﬁa%)'l' Z (L+8;~)flgtm)
A A

Y(m)
+ ) hons(iB+Dad ~Non [ror=(i==5) +3r7

A
+871 Y [AD In AR — A+ %) In (1+25)]
As
FB7Y [A In ALY — (1+A7) In (1+ 7)) (4.2)
A .

As far as the magnetization is concerned, on applying the well known formula for
its average reduced value

oF
T) = (SN)™! —, 4.3)
#(T) = (SN) 7L (4.3)
and on using (4.2), we get
W(T) = 1—(SN)"* T ", @4
A

Without recourse to the numerical calculations, we can draw the general conclusion
that because of Y >0 (see Eq. (3.31)), the magnon-phonon interactions give rise to
decrease of the reduced magnetization (see Egs. (4.4) and (3.30)).
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5. Conclusions

Throughout this paper we applied the Matsubara perturbation calculus to elucidate
how in a highly anharmonic Heisenberg ferromagnetic crystal the spin--phonon inter-
actions affect the reduced magnetization. The anharmonic components of the Hamiltonian,
up to infinite orders, were taken into account in the Hartree-Fock approximation and the
graphs due to them were summed up yielding a set of self-consistent equations. It should
be emphasized that the procedure outlined and applied in this paper because of it
self-consistency holds true for a wide range of temperature below the Curie ‘point.

I would like to thank Dr. J. Szaniecki for suggesting the theme of this paper and for
numerous helpful discussions.

APPENDIX

Let us consider the graphs of the first-order perturbational expansion taking into
account the successive anharmonic components of #{V, #¢ and A (see (2.10),

(2.12) and (2.13)). _
With respect to #D, the straightforward calculations lead to the following results

i 1 & A0 _
DY = —1p g hoos s +3) = E o R+
A s
ns

1! NM
+18 hew2, 172 M n?+1) & _h_ (Z_'z“”’s')z @R, +1) (A1)
2 d : A3 wus us 2 2' NM 0),1-”,,3' Atu,s U2/ .
I’ 55

_ 1 & (A e9)* _ 2
D = _1p g ho (n(")+%)—[— § — P+
1 2 g A3\43 21 NM wus. n 2
us

28 1 b (regene)?
1 ho?. 172 T a® 1y N\ TAtas) n'®) 4
+zﬁZ Z a3 wus ( us 2)2! NM w“-”’s’ ( Atu,s 2)
13 S8

1 A 7 e,)?
X — — (_i(n‘(f;_,_%)
1! NM Wys
us

L Ge) ho(L-e)?
L § Zhwfsﬂ e D g T G4
Apv  ss's'’

vs

1 h (E'ZHM s")2 —(
x = — & Grn) oy gy (A2)
31 NM Dt ptvg ( At+p+tv,s £))
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etc. It can be easily seen that on performing the summation of all anharmonic diagrams
D{" (to infinite anharmonic order), one gets

G Cus)® ~
A eus)” () + 1)
1 2 B = 2
D(1 ™ = -%B Z hco,_a(n(p)+ Ple [ rr - 1]

}:z i (A S h (6 -
1 2 272 (P) Hy (6] ot
+3p A3 wus )2' NM Ortp (n Rj+p,s 2]

3 eus)? —
us e

“MS

x e
’ L Ge? h(le)_
—3p E E ha}d > S () %) P+
j vl By Dysr
Apv ss's’’
1 h ). e ’’ (,q, e‘”)( AP L) .
( 1"'#*“’5 ) ( g.p-l)-u+v,s '*'}))eNMZ i + 0aog (A3)

“3INM  0repere

where n = 4,6,8, ....
hA?

Since for all ferromagnets < 1, it can be shown that only the first term on

D5
the right hand side in (A.3) is essential in our procedure. Thus in further considerations

we shall neglect all terms comprising the ‘expressions like T2 n{®) " B v tn,0 LG
In the same way, we obtain for #§

o0

Sh 22 - e‘“) (@) + %) —
E D(la,n) . %ﬁﬁj\,} (n(p)+ l)eNMZ H N- y [‘iengﬂ, (A.4)
Lo

n=2 A e
and for s#®

2 Z(l e“‘) (1pst®) +4)

N Sh A

D@M = 1 n(p) eNM Lot
> DIty ) on @D
=2 i

1 bl m m
X -Z—SN - E (e + 15 )ngnd™, (A.5)
13
where n = 2,4, 6, ....
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