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ON THE OPTICAL ABSORPTION SPECTRA OF AN EXTENDED
HUBBARD MODEL
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Starting from the Kubo formula we calculate the optical absorption spectra of an ex-
tended Hubbard model including the two-lattice-site Coulomb interaction. The calculations
based on the equation of motion formalism of the Green functions are carried out in the
limiting cases U> Uy, U, t and U, Uy, U,> ¢. It is shown that there are special selection
rules for electron transitions which have striking influence on the optical absorption spectra.

1. Introduction

A series of papers devoted to the properties of an extended Hubbard model were
recently published Ref. [1]. The Hamiltonian of this extended Hubbard model 1ncludes the
two-lattice-site Coulomb interaction and is given by

H = Z tl_]cls JS+(U/2) z nish;— s+(2) z Uil]nlsnjs+(2) Z UZU J s (1)

ijs ijs ijs

where the sums have to be taken with respect to nearest neighbours only n;, = c;-c;,
¢t and ¢ are the creation and annihilation operators respectively for electrons on site i
and spin s. #; is the transfer matrix element, U is the Coulomb interaction potential for
electrons on the same lattice-site, and U; and U, are potentials for electrons at neigh-
bouring lattice-sites.

The main interest of the authors mentioned above was concentrated on the influence
of the two-lattice-site Coulomb interaction on the Hubbard splitting of the energy band
and on magnetic properties. Here we calculate the optical absorption spectrum which is
determined by the real part of the diagonal elements of the conductivity tensor. The star-
ting point of the calculation is the well-known Kubo formula for the conductivity tensor
expressed in terms of two-time retarded Green functions. The evaluation of these Green
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functions will be performed for both U, Uy, U, » t and U» Uy, U,, ¢ using the equa-
tion of motion method. In the first case a suitable Ansatz for the Green function allows
a solution of the equation of motion which is exact in the atomic limit. In the second one,
appropriate approximations for the higher-order Green functions arising from the equa-
tion of motion method must be introduced. The physical content of the approximations
is that of Hubbard’s first paper Ref. [2] and corresponds to neglecting the scattering pro-
cesses of an electron due to temporal and spatial fluctuations in the electron distribution.
In both the limits the spectra are quite different from those for the pure Hubbard model.
Apart from this we shall see that they are influenced by a selection rule for electron transi-
tions so that they also differ considerably from those which one should expect from the
calculations of the one-particle Green function Ref. {1].

In Sec. 2 we give the formulation of the problem and introduce some notations.
Strong intraatomic and interatomic interaction (U, U;, U, > t) is considered in Sec. 3.
in Sec. 4 we treat the case U > U,, U,, ¢ regarding the linear paramagnetic chain and n = 1
for the sake of simplicity. Finally, Sec. 5 contains some concluding remarks.

2. Optical absorption

The optical absorption spetrum is given by the real part of the diagonal elements of
the conductivity tensor. In the linear response theory the frequency-dependent conduc-
tivity tensor o,,(w) is given by the well-known Kubo formula

oplw) = (1/V) ;jg}r I3 Pydo-is 2
P, is the v-component of the polarization operator
P,=ce Z Ryyns (3)
where the R,, are the components of the lattice-site position vectors. J, is the y-component
of the current operator
J, = % = ie z (R;— R tijCis ¢ (€N
ijs

V is the volume of the system and e is the elementary charge. As usual we denote by 4; B},
the Fourier transform of the retarded Green function

+w

€A4;BY, = | e i0(t) {[A(1), B]>dt &)

- 00

for Im w < 0. Substituting (4) into (2) we get

G,(@) = ie(1/V) lim ¥ (R;—R)uticisCiss Pydo i (6)

-0+ ijs
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so that our task now is to calculate the Green function
Gijs(w) = <<ci:cjs; Pv>>w' (7)

This will be done assuming that the Green function {4; B, satisfies the following equa-
tion of motion

K4; By, = {[4, B> <[4, H]; BY,,. ®)

In general, Equation (8) contains higher-order Green functions, so that approximations
must be performed. These approximations are determined by the physical situation under
consideration. Next we study the very large intraatomic and interatomic Coulomb inter-
action matrix elements U, Uy;;, U,;; but small transfer matrix elements ¢ ; and regard
the lowest order of ¢ in ¢. Under this assumption we shall get an exact expression for the
function (7). If U> Uy, U,, ¢ (Sec. 4) we shall derive an approximate equation for the
function (7) which allows the determination of ¢.

3. Optical absorption of a system with strong intraatomic and two-lattice-site Coulomb
interaction '

In the following we seek an expression for o,,(w) which is of first order in z. Since (6)
is proportional to ¢ we shall omit the influence of the kinetic energy of the Hamiltonian
on the equation of motion for the Green function {c;ic iss Pudo. However, the parame-
ters U; and U, will be taken into account exactly. We shall get a nonsymmetric dependence
of the absorption spectrum on these parameters. To see this we resolve the Green function

NI E 5 (6 |
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Fig. 1

(6) into components using the projection operators n;% = n,, and n, = 1—mn,. Of course,
the resolution depends on the lattice type. Here we consider the simple cubic lattice, the
square lattice and the linear chain. Now we denote the atoms i and j by 1 and 2. For the
resolution of the Green functions we need all the atoms being nearest neighbours of 1 and
2 as indicated in Fig. 1. This enables us to write in the case of the simple cubic lattice

Cefsas PYo =2 o 2 % oo bZ Kedseas [T 11 miamiis PoYo ®

ai12 b3 n=1 m=3

with a, b = + or —.
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The equation of motion gives for the functions on the right-hand side of (9)

6
{w i (U - UZ) (501+ h 5a2+) e _22 [Ul(ébzn- 1+ 5b2n+) - Uz(éazn- i+ 5(12,.1‘)]}

12 12 12 12
X <<c;-362s Hl H3 ”3"_.1";'3; Pv>>w = e(RZ—Rl)v<c-1+s02s ]__[ H "g"_snfnﬁ‘)- (10)
=1 m= =1 m=3

If we consider the square lattice or the linear chain the summation and product indices
in (9) are limited to 8 or 4 resp. Correspondingly, the summation indices in (10) are limited
to 4 or 2 resp. and the product indices in (10) are limited to 8 or 4 resp.

The set of all the poles of function (7) is represented in Table I. Typical transitions
.are shown in Fig. 3.

From Equation (10) one sees that there is a nonsymmetric dependence of the func-
tion (7) on the parameters U; and U,. This nonsymmetry caused by the Pauli principle
is expressed by the term

(U—U3) (B4, + —0a,4)s (1D

in (10) whereas the sum of all the remaining terms in (10) exhibits a complete symmetry
.due to these parameters. To understand this we neglect the surroundings of atoms 1 and 2
.and regard both the atoms as occupied by two electrons of opposite spins.
—S5 +5 CfiCys —S, S

a . —— .

1 2 1 2
"The energy of the configuration on the left is E® = U,. The operator cjc,, entering
in the expression for the current operator causes a jump of the s-spin electron from site
2 to site 1 so that we get a new configuration (on the right) with the energy E© = U. If
both the atoms were occupied by electrons with parallel spins the energy of that configura-
tion would be E® = U, . But here an electron jump cannot take place because the operator
1,5 does not involve spin-flip. Consequently it results in the non-symmetric behaviour.
Tn other words, a selection rule for the optical transition produced by the Pauli principle is
‘obtained. To see the forbidden transitions we calculate the positions of the energy levels of
.our system. These positions of the energy levels come from the Green one-particle function

eiss €is Vo (12)

We denote the i'® atom by 1 and regard its nearest neighbours sphere as indicated in Fig. 2.
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For the simple cubic lattice we can write
.

Cericido =5 5 %o L ers [T TT nirntss eie (13)

a7 by b n=

The Green functions on the right hand side of (13) satisfy the equation of motion

7 7 7
[0—Ubs s+ — 22 (U164, + —U3z0,4)] 15 1T 11 e e €1sde
n= ° n=1 m=2

7 7
= <I1 T1 miam. (14)

For the square lattice or the linear chain, the summation and product indices in (13) and
(14) are limited to 5 or 3 respectively.

&
Ue2Upe2Up |
Us2Uy+ Uy

U"2U7 S

U+ Up+2U;
U+ U7‘U2
U+Uy

U+2U,
U+Up
u

2Uy+2U2
2Up+U;
22U

Uy +2Up
Uz
Ur.

2U; {
U,
0 I
Fig. 3. Energy levels of the one-dimensional chain and the possible transitions between the zero level and
the higher ones. Other transitions from higher levels to the zero level are forbidden due to the selection rule

We see from (15) that the set of energy levels is symmetric with respect to the param-
eters U; and U,. The set of all the poles of function (13) is represented in Table I.
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4. The absorption spectrum of the linear paramagnetic chain in the case of a weak
interatomic Coulomb interaction

In this Section we regard the limit of strong intra-site Coulomb interaction U and
small but finite matrix elements U,, U, and ¢ In order to treat the influence of the largest
parameter exactly we use a decomposition of the function (7) into components following
Hubbard III Ref. [3]: ’

Gijs(w) 2 Gl}s(w) Wlth Gus(a)) S <<C Js ] s> v>>m’ (15)

where a, b are equal to +or —.
These components satisfy the equation of motion

[(0 U(6a+ —5b+)]Gus(w) = e(R Rl)V¢;’_]bS
+ ZI til <cls n _sn?_scjsnj _s» Pv>>w
- 2 tjl <ci-is—n‘il_sclsn;‘_sn_,; _s> Pv>>a)
cl
_qazl: til<<(citscl..s_cl+_sci s cls n_l s Js’ v>>w
+4y Zl: takennt_ e €1 _s— ¢ _)Cjss PyDo
+ Z QU g+ Uiy _Jeighi _cin’s g5 Py,
- z <<cls n‘l- s ]s ] s(Uljlnls+U211nl s) Pv>>a)s (16)
with g; = +1 and &%, = {chni_c; 5.
Obviously, the last two terms on the right hand side of (16) are caused by the terms
added to the Hubbard model. To solve this equation we make use of the decoupling procedu-
re of Hubbard’s first paper (Ref. [2]). These approximations lead in all terms arising from

the pure Hubbard model to the result of K. Kubo (Ref. [4], Eq. (3.8)). The remaining terms
are decoupled in the same manner:

Z <<(U11inls+ U2linl _s)ci-: n‘iz..scjsn? _s; Pv>>m
= <<[z (Ulltnls+U2hnl s)+U2116b+]Cls nl s JS J ss v>>w

x~ [ZI ‘:Ullins+ U21in _s)_' Ulij U2l_]n _s+ U2115b+:| <<cts nl stan sa v>>m' (17)
Correspondingly we approximate

Z <<cts nz s Js 1 s(UllJnls'I' UZIJnl s) Pv>>a)
= <<Cls nl scjs Jj -s[z‘ (Ulljnls"" UZZjnl -.s)+ U2ij5a+]; Pv>>w

[Z (Ulljn + UZIJ _s) Uli] UZi]n _s+ UZIJ a+] <<c1s nl s JS _s; Pv))(a' (18)
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Substituting the approximations (17) and (18) into (16) we see that the terms proportional
to U, cancel each other. Therefore we obtain: '

[0—(U—Uy;j) (6a+ —+)] Gil(w) = e(R;— R), %5,

+ na_s IZ tilGlcjbs(w) hy nb.s ; tle'illfs(w), (19)

with n%, = (nf.,> in virtue of translational invariance. Comparing this equation with
Equation (10) of Sec. 3 one sees that (19) can be interpreted as a two-atomic cluster approxi-
mation with respect to the two-lattice-site Coulomb interaction. Moreover, U, does not
occur explicitly in (19). This is caused by a general selection rule for the electronic transi-
tions which we have discussed in detail in Sec. 3. Neglecting in U,;; the dependence on
lattice-sites i and j, Equation (19) can be solved easily by means of Fourier transformation.
In this case both the solution and the discussion can be got from that of K. Kubo, Ref. [5],
if we replace there the parameter U by U— U, . But this corresponds to a nonrealistic situ-
ation since it implies that the Coulomb interaction potential U, has the same value for
all distances between lattice-sites i and j. This error will be avoided in the next Section
where Equation (19) will be solved taking into consideration the dependence of U,;; on i
and j.

From the term proportional to U,;; considerable difficulties arise for the solution of
Equation (19): it prevents a simple solution of (19) by means of a Fourier transform since
it leads to a convolution integral in the momentum space. However, we shall make use of the
fact that we only need the integral (6) rather than the full information contained in Gyjy(w).
For the sake of simplicity we restrict ourselves to the one-dimensional case and show in the
Appendix how the following procedure can be generalized to cubic lattices. Next we
rewrite (6) in the form

op(@) = —e(1/V) lim ), Y (V1) Gid(w— i), (20)
820+ ab ks
where we have introduced the Fourier transforms

ty = (N Y ™0 @b
k

and
G = (1/N) Y. Goe™ R =%, (22
k

For the one-dimensional chain we have #, = 2t cos (k) and ¥ = Na and therefore

2et
o) = — lim E E sin (ka)G2 (o — i6). (23)
N 550+
ab ks

Obviously, to know o(w) it is sufficient to calculate )’ sin (ka) G® instead of G
k
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Now we return to Equation (19). The Fourier transform gives
(@—U(B,r =85 NGl + 1 Y (° Gl —n G2
= —ie(d]dk,)Py;+(3p+ —0,0) (UN) Y. U, , 4G (24)
p

where we have introduced
0ff = (N) }, ofe -0 25)
and

Uzij — (l/N)Ek: Uzykeik(Ri..Ri)' (26)

For the one-dimensional chain we have U, , = 2U, cos (ka). It is convenient to define
still the matrices

Gt 00 0 0] ot
Go” 01 00 oL
Gu=| . | B= R (27
G~ 00 -10 Dp.”
G~ 00 00 D"
and
w Wit +n_ 0
A, = —n gy o+ U+2n_,—D1, 0 +n_t . (28)
+n 0 o—U—-Q2n_j—Dt, —n_g,
0 +n _n:stk @
Using (27) and (28) Equation (24) can be written in the following matrix form
AksGks = —'le(a/akv)¢ks+B(1/N) Z UZ,p-kas (29)
p
or
Gio = —ieAG 00k i+ A BUAIN) Y. Uy, 4Gy (30)
14

and finally for the linear chain

-1
_. Z sin (ka)Gy, = ie [(1/_1\7) z Ag'B2U, sin? (qa)—l] Z sin (ka)A;! % Dy,
q

k- k
(31)
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After straightforward calculation we get in the case of the neutral half-filled band model
the following solution

. 2 ¥
ie a 2U0J 9
o(w) = lim — E Ll oh + 00+ ke —)
( ) s0+ @—i0| N k( g & 2+J(2U'—U2)
k

. d + + — g 2 d
e {2(U— Ut S (@7 =057+ (U= —(@=i0)) 5, @}
- Z - Q1+ IQU-Uy)) (@— iy —UP—1d) R

k

2

with

P 92_2[1_f f@%—yz_—f_iz]_
t (0—i8)*=U?

The correlation functions @ are given in the Appendix and it will be seen there that they
are independent of U, and U, in the case n =1 considered here. ’

The optical absorption spectrum is given by the real part of the conductivity. Here
we do not give a detailed resolution of ¢ intc real and imaginary part since it would lead
to voluminous expressions. However, it can be easily seen that there occur two funda-
mental types of electron transitions. After a simple manipulation the energy-denominator
of the second term in (32) takes the form:

1 1 1 1 2

+ P — e — = + —_—
Ao—0)  oo+to) ofo-o) o(o+o) oo

(33)

with

— 16[U,QU-U)T
= \/Uz_tz and o, = \/Uz__ 2[ 2 2)]_ )
4*+16U,QU —U,)

The first and the second term of (33) represent electron transitions of the transfer energy w,.
A further contribution to this type comes from the energy-denominator of the first term

Re a(w)/tz

|

ws u Vs w
Fig. 4

of (32). The third and the forth term of (33) describe transitions of transfer energy
and correspond to electron transitions between the split-band of the Hubbard model.
Since k runs over the first Brillouin zone, the sharp lines 6(w—cw,) form an absorption
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band of band width ~/U?+472—U. The absorption line d(w —w,) is well-seperated from
this band. The separation distance is about U,. Hence the reduced absorption spectrum
has the shape qualitatively represented in Fig. 4. The reduced absorption spectrum is
defined by o/t2. This quantity is of more interest than o as we shall sec in the following
discussion of the limiting behaviour. If we keep fixed U, and regard the limit £ — 0 of
o/t2, the absorption line §(w — w,) will be shifted only toward the position (U— U,) whereas

Re a (w)/t?
U-u, v w
Fig. 5

the band will be both narrowed and lowered because the oscillator strength for the transi-
tions 8(w— ) is proportional to ¢2 for fixed U,. Moreover, the lower edge of the band is
unchanged if ¢ goes to zero. In Fig. 5 the behaviour of the absorption spectrum for decre-
asing band width is represented. The arrow indicates the direction in which ¢ decreases.

Re a(w)/fz

U-U, w
Fig. 6

In the limit ¢ = 0 of o/t? the band disappears and the sharp line é(w—w,) is now in the
position U— U, (Fig. 6).

If we keep fixed ¢ and consider the limit U, — 0 of o/t2, the band grows in height
while the band edges are preserved. The line 6(w—w,) will be lowered and shifted from’

bRe o (w)/t? L\Reo (w)/t?
U-Uy u w U i

Fig. 7
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the left to the right and vanishes at U since the oscillator strength for the transitions of
the frequency w, is proportional to U? for fixed ¢. This behaviour is plotted qualitatively
in Fig. 7. The arrows there indicate the direction of decreasing U,. Finallyat U, = 0 = ¢
the reduced absorption spectrum consists in only one sharp line at the position U.

5. Concluding remarks

In the present paper the optical absorption spectrum of an extended Hubbard model
was discussed. It was shown that the inter-atomic Coulomb interaction is of striking in-
fluence on the spectra at least with regard to the cases considered here: U,U,U,>¢
and U > U, U, t. In the first one, studied in Sec. 3, the resulting spectra consist of a
number of dens-lying sharp lines between the edges U, and U+ U, (for the one-dimen-
sional chain — for the s. c. lattice the edges are U, and U +5U, +4U,). The distribution
of these lines depends in a nonsymmetric way on the parameters U 1 and U, whereas one
could expect a symmetric dependence since the poles of the one-particle Green function
depend symmetrically on these parameters. The nonsymmetry of the two-particle Green
function concerning U; and U, is caused by a selection rule for electron transitions in
external electrical fields. This is illustrated in Fig. 3 for the one-dimensional chain. There
we have plotted all the energy levels and the set of the possible transitions between the
zero level and the others, and it can be seen that this set is smaller than that of all transi-
tions which could have been imagined from the calculation of the one-particle function.

The selection rule is of importance in the second case studied in Sec. 4 too: it operates
in such a way that for n = 1 the spectra will not depend on the parameter U,. Moreover,
the spectrum differs from that of the pure Hubbard model not only by a change in the shape
of the Hubbard absorption band but also in the occurence of a new sharp line at a fre-
quency well-separated from the band. This situation should be realized in materials like
NiO, CoO or MnO and one should observe in experiments spectra similar to that qualita-
tively represented in Fig. 4. Optical absorption experiments in these materials should at
least enable us to estimate the order of magnitude of the two-lattice-site Coulomb inter-
action matrix element U, and therefore allow us to answer the question whether this model
or the pure Hubbard model is more suitable for the description of these materials.

The authors thank Professor Dr Haubenreisser, Professor Dr Ziesche and Dr
Schneider for useful remarks.

APPENDIX

1. Equations for the conductivity in the case of cubic lattices

In the case of cubic lattices Equation (20) can be written in the form

S. C.
, 2
i = — 222 fim 5 sin (k,a) g G (w—i8),
V s-0+
ab

ks



Correspondingly we get instead of (31) the equations,

8. C.:
. . ) 4 0
sin (k,a)G,, = —ie sin (k,@)Az" — &,
ok,
k k
+2U, Y sin’ k,ad5'B Y sin (p,a)G,,
k »
f.cc
k.a k,a k.a k,a a
sin — cos —— G, = —ie sin —— cos —— A —
2 2 2 2 ok,
k k
., k.a k.a | pa _
+4U,(1/N) E sin® 5 5 = A'BG,
k,a D, k,a p.a
x | cos = cos =
2 2 2 2
and
. k. k,a @ i . k.a k,a 41 %,
Sit —— COS —— = —ie sSm——cos— A7 —
2 2 e 2 2 T ok,
k k

+4U,(1/N). E sin? —cos ;a sm% A:'BG,,

I ka pa k.a p.a
I_ 2 2 2 2 |’

¢ks

¢ks

73
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k.a k,a k.a
sin ~—— cos —— cos — Gy
2 2 2

k

] kea ka ka @
= =ip sin —— cos —— €08 — At — Py
2 2 2 akx

k

8U ka Lka L ka . b !
= sin? = cos? 78 cos? 222 gin L P8 cos Lt
2 2 2 2 2

A G s

kp

These equations can be solved directly with respect to the xx-components of the conduc-
tivity tensor.

2. Correlation functions

The correlation functions & ? are calculated by Sakurai (Ref. [6]) in the case of the
pure Hubbard model. For this purpose he has introduced the Green functions £e; an -
etn?_ .y which allow the determination of the functions oL % by means of the spectrum
theorem. In our case now we can write the following system of equations

(0—=Ub,1 +Z(Ung+Uszn o)) <<st"1} s Cimi sy

= 5ij5abnb_s/2+ nb_s IZ <<clsnlc..s; ci—; n‘ij_s>>tlj,
]

where we have made use of a similar decoupling procedure as in Sec. 4. The solution of
this system comes from Ref. [6] substituting w+ U’ for E in Ref. [6] with U’ = Z(Uyng+
+ Uzn_s) 0

Tt B o+U —n-t, o
BT 00 (0+U—t) (@+ U =U)—n _Ut,’
n-gn t
Gl =Gt =—= — 5
= k 2 (0+U —t)(0+ U —U)—n_#U
n- o+ U —-=U—n_g
Gk_s_ — - ~-s'k

21 (0+U —t) (@+ U =U)—n_4,U"

Of course, the sum Y. €c;snj—s; Cis7i- 59 gives the function {c s ¢iy. For the correlation
ab

functions we get

n_

¢ks = E EL [(Eks n _stk)f(Elchs— U’) —(Ell:‘s_ n -stk)f(Eks_ U,)]’
ks ks
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n r A
¢k_s_ E EL [(U+n s k—Elfs)f(Ellc‘s_U)_(U+n_stk_El[c]s)f(El?s=U)]a
ks~ ks
n-n_t ,
% = Pi' = g UEL—U)—AEL= U],
ks ™
with
FEGE=U") = 1j(E" 0P +1)

and

EVE = 3 (4 + U2 +2Qn_— D)1, U+ U?).

In the case solved here (n, = n, = 1/2) we have u = U/2—U’ so that the functions oL
are independently on U; and U, respectively.
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