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THE ELECTROMAGNETIC RADIATION CONDITIONS FOR
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On the basis of electromagnetic Huygens principle for a medium with uniaxial electric
anisotropy the electromagnetic radiation conditions were obtained. These radiation condi-
tions, formulated by us, can be regarded as conditions of the Rubinowicz type. It is sufficient
to use radiation conditions to exclude the existence of radiation sources at infinity.

1. Introduction

In order to apply the electromagnetic Huygens principle to diffraction problems
one must first formulate the so called radiation conditions. The integration surface in the
clectromagnetic Huygens principle possesses then always such a fragment which reaches
infinity (Fig. 1). Observation point P will then receive the waves originating — from the

SR

P

Fig. 1. The integration surface in the Huygens principle is composed of two closed surface'S and Sg.
In order to apply the Huygens principle to diffraction preblems the surface Sk is moved to infinity. P is
the observation point at which the electromagnetic field is calculated
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integration surface, which is located at a finite distance, as well as from points at infinity.
In dealing with physical problems we must exclude, however, waves originating at infinity
because of the lack of electromagnetic field sources there. The radiation conditions reduce
themselves to the requirement that the energy flux long distances from the source and on
diffracting bodies is directed outward and that infinity does not contribute to the field
at the observation point.

The electromagnetic radiation principles formulated for the first time for the case
of an isotropic medium by Claus Miiller were of the form:

lim R(Ei+ \/ﬂ sijkn,.Hk) =0 (1.1)
R-w &g
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lim R(Hi—— \/— eijknjEk> =0 (1.2)
R-w Ho
lim RE; < o (1.3)
R- .
lim RH; < o, (1.4)
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E;, H,are here the electric and magnetic field strength vector components, #; — components
of unit vector in the direction of vector PQ connecting the observation point P with
point Q at infinty, where the electromagnetic field from formulas (1.1)-(1.4) is localized.
The conditions (1.1)—(1.4) were derived by Claus Miiller from the electromagnetic Huygens
principle formulated by Tedone [10]. Contributions originating from different area elements
in this formulae do not fulfill the Maxwell equations and cannot be treated as secondary
wavelets, which must be implied in genuine Huygens principle.

Rubinowicz [7] who considered the exact form of the Huygens-Lorentz principle
obtained weaker electromagnetic radiation conditions, than those given by formulae
(1.1)~(1.4). They are as follows

lim R(Ei-l— \/,“ &l Hk> =0 (1.5)
Row &o

lim R(H,.i— \/ ko] sijknjEk> =i, (1.6
R- Ho

E'L = l ,(nJEJ), H,'L = Hi—ni(njHj).

where

Conditions (1.5) and (1.6) contain only the tangential field components whereas the:
Claus Miiller conditions contain total field vectors.

In this paper the electromagnetic radiation conditions for the medium with uniaxial
electric anisotropy will be considered. It will be based on the electromagnetic Huygens.
principle formulated for this medium by Wiinsche [11].



2. The electromagnetic Huygens principle for a medium with uniaxial anisotropy

Let the space limited by closed surface S, area V, contain a nonmagnetic medium
with uniaxial electric anisotropy. Electric properties of this medium are described by
the dielectric and the magnetic permeability tensors of the form:

aij = 80(5ij*C'Cj)+EeciCj (2.1)
= 0y, (2.2)

where ¢°is the dielectric permeability if the medium in the direction parallel to the optic
axis, ° — the dielectric permeability in the direction perpendicular to optic axis, ¢ — the
unit vector along the direction of optic axis.

The electromagnetic field at an arbitrary point inside this area is given by integrals
over the limiting surface S.

E(P) = %t 3€ xo{[N x E(Q)1&unVittm; 1G‘E’(r —7)— lw/toG(E’(r —7") [N x H(Q)];}
s (2.3)
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s 2.4)
where
= {x1, X3, X3}, 7 = {x, x5, x3}

Green’s tensors Gﬁf), G(‘" were found by Wiinsche and their form is follows:
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where
RO = \/eo(zz+92) Rt = \/3022+ae@2,

z, ¢ are the cylindrical components related to the optical axis of the medium.
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If we choose the optical axis so that it is one of the main dielectric permeability tensor
axes, and coincides with axis ox; of the cartes1an frame coordinates x,, X2, X3 WO have
¢ = {0, 0, 1}. Introducting further, unit vector 7 in the direction of vector R connecting
point Q on surface S with point P where the electromagnetic field is calculated

1T =

, n= {ny, ny, ny}

=

IREE {xy—x, x;—x3, x3—x3} )

after some transformations of (2.1)—(2.6) we get:
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and
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The jindex in expresions (2.8) and (2.9) runs through 1, 2, 3 and 1, 2 only in those terms
for which it is clearly indicated.

where the symbols mean:
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3. The formulation of the electromagnetic radiation conditions for a medium with uniaxial
electric anisotropy. .

The integration surface in (2.8), (2.9) is compﬁ‘éed of two closed surface, the first
one contains field sources and difracting bodies, the second one surrounds the first one
(Fig. 1) and is a spherical surface with radius extending to infinity. This surface is denoted
further by S,.

If S is.a spherical surface with its centre at observation point P, so the unit vectors N
and 7 from (2.8)~(2.9) are antiparallel, and the area elément is equal to d2x, = R%dy,
where dy is the solid angle under which the area element from the observation point is
seen.

Because

Ejukpa = 001y~ 001
integrating (2.8) over the infinite surface of the sphere’ we obtain the expression
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and similarly, integrating (2.9) over S, we obtain
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N3 ‘8_8.0 N elkan 8o eikOR
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where E;, H;, denote the tangential components of the electric and magnetic field strength
at the surface S,

The integration surface in (3.1) and (3.2) is proportional to R* whereas the terms
in these equations contain R in different powers. Finally, expressions (3.1), (3.2) contain
integrals of three types. The integrals of the first type, in which R is found in the first
power, the second type of integrals are independent of R and the third type contain R

Because infinity must not contribute to the field at the observation point the expres-
sions (3.1), (3.2) must be equal to zero., This is possible only when integrals of all three
types vanish. : ;

In the limiting case R> 1ntegrals of the third type vanish if the absolute value
of the vector product &;,,N,H,, &;,,N,E, has a finite value.

Let us further notice that one should postulate:

’ e%°
lim R <—— Ef+ |22 rcjksk,,qN,,H;) =0, (.3)
R-w ., . N g
im RHE'=0, . (3.4)
R—> o0
lim Res,,N,E; =0, (3-3)
R—w0
lim Res,, N Hf =0 (3.6)
R— 0

in order that the first type of integrals vanish.
In order to demand the vanishing of the second type of integrals in this expression
we postulate

eO ’
lim (3_ Ef+ \/_* K jipgN pH ) =0, (3.7
R—® o
lim Ef =0, (3.8)
R—>
lim Hf =0, (3.9)

R—o0
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lim &;,,N,E+ = 0, (3.10)
R->w
lim &3, N HF =0 (3.11)
R—

similarly, considering expression (3.2), we have the conditions

] 2%,
lim R Hjl—— “,qN E =0 (3.12)
R Ho
lim RE% =0 : {3.13)
R—->aoo
lim Re;,,N,H} =0 .19
R w

and for the second type of integrals, respectively

lim | Hf — Jqu =0 (3.15)
R-w ﬂo
lim E¥ =0 (3.16)
R-w
lim Hi = (3.17)
R—=o0
lim aquNij- =0, (3.18)
R->
lim &;,,N,E} = 0. (3.19)
R—-w

In the expression (3.3)~(3.19) we used the selfevident identity
N,E, N, EL- MNH = g, N,HL.

.IP‘I .117‘1 paq >

As it is easily seen, the conditions (3.4)~(3.6) are stronger than (3.7), (3.9) — (3.11)
and these are automatically fulfilled if the conditions (3.4)-(3.6) are fulfilled. We can say
the same about conditions (3.12)-(3.14) and (3.15), (3.16), (3.18). If we notice moreover
that condition (3.13) is stronger than (3.8), (3.4) and (3.5) and they in turn are stronger
than (3.17) and (3.19) respectively, we formulate for the anisotropic medium under
consideration the following radiation conditions:

&% o 3
lim R (— Ej_ + \/'—0 KjkakqupHéL) = 0, (3.20)
R+ o &g
o S 808
lim R(Hf— £, EL ) = 0, (3.21)
R- o - ¥ ﬂ_o

lim RE} = 0, (3.22)

R—+w
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lim RHE = 0, (3.23)
R~
lim ReayaN,Ef = 0, (3.24)
;im Re;, N HE =0. (3.25)

4. Conclusions

Electromagnetic radiation conditions obtained by us contain only tangential compo-
nents not total field vectors and on account of this they can be regarded as conditions of
the Rubinowicz type (1.5) and (1.6).

The characteristic of the medium with uniaxial anisotropy is its symmetry axis.
This characteristic has an influence on the electromagnetic radiation conditions. For
those reasons these conditions can be divided into two groups.

In the first group we include

, 6 o
lim R (—a— Ej + \/ o K jutipaN pHy > =0, (4.1)
lim RH §- =0, “4.2)
R—-
lim .esIJ,IRNI,EéL =0 4.3)
R—o
in the second one we include
%,
lim R (H}— \/ — ej,,quEéL) =0, (4.4
R0 Ho
lim RE3 = 0, 4.5)
R-w
lim &3, RN, Hy = 0. (4.6)
R=w -

If conditions (4.1)-(4.6) are fulfilled we can characterize the behaviour of the electro-
magnetic field at infinity by stating that it behaves similar to the superposition of plane
waves of the TM and TE types moving in the ¥ direction.

The following conditions are then fulfilled:

0.e

&¢e

Ef + / o] KitipN,He = 0, “.7

o £
1 =0

Hi =0, (4.8)

83paN,EL = 0, (4.9)
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and
';6;0 .
H{- [— €ipeNpyEs = 0, (4.10)
Ho
EL =0, (4.11)
squNpH,;L = 0, 4.12)

Conditions (4.1)~(4.3) correspond to the TM field, and conditions (4.4)-(4.6) to the

TE field.
The electromagnetic radiation conditions obtained above are sufficient to exclude

the possibility of radiation from infinity.

The author expresses gratitude to Docent J. Petykiewicz for the discussions and
helpful suggestions concerning this work.
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