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The pseudodipolar theory of magnetocrystalline anisotropy is discussed within the
framework of the itinerant electron model. The first anisotropy constant K; for crystals
having cubic and hexagonal symmetries is derived. It is pointed out that K; depends on basic
band parameters such as the energy gap and Fermi energy. Some conclusions concerning
the temperature dependence of K; are drawn. The usefulness of the model for other
problems is also discussed.

1. Introduction

The aim of this paper is to elaborate a simple model of magnetocrystalline anisotropy
within the framework of the band theory of ferromagnetism.

The problem of anisotropy was a subject of many experimental and theoretical papers.
The microscopic theories were mostly based on the Heisenberg model [1] and only a few
papers treating the problem in the itinerant electron model were published [2-9].

From the microscopic point of view the spin-orbit interaction is considered to be
responsible for magnetocrystalline anisotropy. If a term describing this interaction is
introduced into the Hamiltonian and the perturbation theory is used, it is possible to
obtain an anisotropy energy term in the second order for crystals of hexagonal symmetry
and in the fourth order for cubic crystals. Such calculations, with some other simplifica-
tions, were performed for nickel and iron [2-4]. But the obtained values of anisotropy
constants were not in good agreement with the experimental data. Therefore, in subse-
quent papers these simplifications were successively rejected and it was shown that the
deformation of the Fermi surface induced by spin-orbit interaction essentially influenced
the anisotropy energy [5]. Moreover, it was derived for nickel that the existence of degener-
ate states near the Fermi surface gives a large contribution to anisotropy [6-8]. Recently,
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progress in evaluating of the real band structures for transition metals allowed one to
perform the anisotropy calculations more exactly.

It should be pointed out that the aim of the mentioned papers was to obtain the best
possible agreement between theoretical and experimental results concerning the anisot-
ropy constants and their temperature dependence for transition metals. Because many
additional effects had to be taken into account, the calculations became so complicated that
it seemed ineffecti ve to use such an approach for problems in which the magnetocrystalline:
anisotropy plays an important role as it is e. g. in- the domain structure theory. Due to
this fact, in previous investigations of domain structure using the band model, uniaxial
anisotropy was described in the Hamiltonian merely by a term of the molecular field type
with a generalized coefficient treated as a parameter [10]. More accurate considerations of
domain structure require a consistent and microscopic method for introduction of anisot-
ropy.

We see therefore, there are two different aspects of the anisotropy problem. On the
one hand, very exact calculations are performed to obtain the best agreement with experi-
mental data and on the other hand, very simple models are necessary to describe anisot-
ropy in various problems.

In this paper we will deal with the latter aspect of anisotropy, which seems to us
a particularly interesting one. Namely, within the framework of the band theory of ferro-
magnetism, we will present a model of magnetocrystalline anisotropy based on a pseudo-
dipolar Hamiltonian. It will be shown that the anisotropy constant depends on basic
band parameters, such as the energy gap and the Fermi energy. The simplicity of the model
allows one to use it in various problems in which the anisotropy plays an important role.
It should be effective in the domain structure theory as well as in investigations of the
influence of anisotropy on spin wave energies. '

2. The Hamiltonian

We assume that the Hamiltonian consists of two parts: H;— describing isotropic
interactions and H, — responsible for anisotropy effects. So

H = H+H,. (1

We take H; in a form of the one-ba nd Hubbard Hamiltonian

Hy = Y Ticineiot+ 1Y i iy cip 1))
ijo ¥
where c;(c;,) are creation (annihilatioh) operators of an electron with the spin ¢ = 1 or |
in the Wannier representation at the lattice point . T;; denote hopping integrals from the
lattice point i to its nearest neighbour j and I represents the intra-atomic Coulomb inter-
action between electrons.
We choose H, in a form of the pseudodipolar Hamiltonian

Hy=1% Z Pij[sisj"3ri_,'2(si"ij) (Sj"ij)]- 3

itj
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In the above expression: P;; is a pseudodipolar constant equal to P if the sites # and j
are the nearest neighbours and equal to 0 in other cases; r;; is the radius vector and S;
is the spin operator assigned to the lattice point i. We define S; -components in the second
quantization representation according to equatlons

X + +

S = % (cy ety cn)s

SY - i + +

Y (e ci—ciycq)s
Z ) + +

S =3 (cyeq—cicy). C))

Then, H, can be rewritten as follows
. + .+ TP S R U N RPN SO e
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where

Ay = —3 Pjym—rm—e——, (7)
ij

S rii—ir; . ]

Bij= _%Pu( rz 1) {EJ

i

The pseudodipolar Hamiltonian was first introduced by Van Vleck for magneto-
crystalline anisotropy investigations [11]. Though such an approach has to some extent
a phenomenological character (the coupling constant P is in fact treated as a parameter,
which can be determined by experimental data), it was successfully used in the Heisenberg
model [1, 12]. As far as the band model is concerned, H, given by Eq. (5) seems to be
the best Hamiltonian consistent with the Hubbard term (2). The pseudodipolar Hamil-
tonian H,, describing the interactions between electrons in the Wannier states at two
nearest neighbour sites, constitutes a natural complement to the Hubbard model, in which
only the intraatomic interactions are taken into account.

Now, by means of the Fourier transformation we transform the Hamiltonian (1)
to impulse space and get

. -
i + + + 3
H= E £4ChoCrot N / Ch+mtCh’ —miChr Cht

ko kk'm
1 i s + r L+ +
N kkz {—% Z [Dm(ck+ moCk' =m—oClk'aCli—o ™ Z 66 Cr+maCr -ma"ck’a"cka)
‘m a a’

+ + + + .
+ 6Amck+mfck’ —'ma'ck'o‘ck&] + Bmck+mfck' —mtck'&ckl, + h.C.}, (9)
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where 6 = *1, & = ) T;;*"i"") and D, 4,, B,, are the Fourier transforms of D;;, 4;;,
7

B;;. The form of the Hamiltonian given by Eq. (9) is very convenient and it constitutes
a starting point for our calculations. Taking into account that the strength of psehdé-
dipolar coupling is small in comparison to intraatomic interaction we will calculate the
mean energy of the system and show that this energy depends on the direction of magnet-
ization with respect to the crystal axes. We will find energies and anisotropy constants for
crystals of simple cubic and hexagonal lattices. The examples will show that despite the
simplicity of our model it is possible to obtain quite reasonable results.

It is worth while to mention that Hamiltonian (9) can be useful for solving problems
in which the magnetocrystalline anisotropy plays an important role (e. g. domain structure

investigations).

3. Evaluation of anisotropy energy for a crystal of hexagonal structure

For crystals of hexagonal symmetry, because of an uniaxial anisotropy, the free
energy density can be expressed in a form

F = Fo+K,(1—a3)+K,(1—a3)+ ... 10)

where K; and K, are anisotropy constants and o5 is the direction cosine of the magnet-
ization with respect to hexagonal axis “c”. For the Heisenberg model [13] it was pointed
out that as far as anisotropy is concerned the entropy contribution of dipolar interactions
to the free energy is negligible so the free energy can be approximated by the internal
energy of the system. Therefore, in our considerations, we will evaluate the ground state
energy as the mean value of the Hamiltonian.

3.1. Simple hexagonal structure

In this section we calculate the mean value of Hamiltonian (9) and derive the anisot-
ropy constant K; for simple hexagonal structure. For this purpose we introduce the'
Green functions G°°(k) = {c,; i D defined in the standard way [14], which satisfy
the equation of motion

1
E<<cko'; cl:;z">>E = i; <{cko'5 cljo"}) +<<[ckm H]: cl:-a’>>E' (1 1)

Functions of higher order appearing on the right-hand side of Eq. (11) are decoupled
according to the Hartree-Fock procedure and the following set of equations is obtained

1
(B—ex-+66f —In_)G7(K) = 5 +F (R)G~ "), (12)
T

(E—g,—6c—In,)G™ (k) = F~°(k)G*°(k), (13)
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Then, one-electron Hartree-Fock energies are given by
5
E]s‘ = 8k+‘%‘ In— EAk,

4y = [Up+2e2) > +4F°(R)F ~°(K)]'/2,
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(15)

(16)

(17)

(18)

(19)

and s = +1 or —1. Let us pay attention to the fact that the presence of pseudodipolar
coupling leads to a modification of the energy gap between spin-split bands. We can see
(Eq. (19)) that the energy gap depends on the wave vector k, so the splitting is different

in various points of the Brillouin zone.

The internal energy of the crystal (the mean value of Hamiltonian (9)) is equal to

N N
E= Z E f(ED)~ 7 +Do) (n*—p*)+ 7 Do(n*+4%)

ks
u 1
. 3 Z Dm l:l'l' N Z (nka—nk—a)nk-i-ma] »
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N k.

ks
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ks

where

In the above expressions f(Ef) represents the Fermi-Dirac distribution function.

(20)

(21)

(22



370

Equations (20) - (22) constitute a self-consistent set. To solve this set we introduce
some approximations. Since, the pseudodipolar coupling constant P is much smaller
than I — the parameter of intraatomic Coulomb interaction — we can expand expresion
(19) into a power series for P/I and neglect all terms of higher order than P/I. We assume
also that the distribution function of occupation numbers for one-electron Hartree-Fock
states is the same as for an isotropic ferromagnet, i.e., f(Ef) ~ f(EY"). Then, the mean
energy of the system is equal to

N N 1 g
E = z e f(E")+ Z(nz—ﬂﬁ)'— 3 Doug+ N Z 66" Dy i SERN(Em' ), (23)

ko km

1 \" Oc
Ho = N - JES).
ko

Energy Edepends on the direction of the magnetization vector with respect to the crys-
tallographic axes through D, and D, which in turn are related to the pseudodipolar inter-
action. According to Eq. (6)

r2 2]
D, = D,=—% Y Pi|1-3{—=%) |, 24
: Z ! Z ,.[ <r,,) (24)

where r, = |r;—r;| is the radius vector to nearest neighbours, and its components
rid = X, Y,Z) are taken with respect to quantization axes. To obtain the anisotropy
constant, it is necessary to transform the components of r, to crystal axes by use of the

relation: r} = Zoc,ir,';, where a;; are the direction cosines and i = x, y, z. Taking the
i

sum over the nearest neighbours, we obtain

Do = + (3P, —2P,) [-2+3(1—ad)]. (25)

where

P, and P, denote here the pseudodipolar coupling constants, and P, = P, if the considered
sites are from the same hexagonal plane or P, = P, if they are from adjacent planes and
O3 = Oz,

In order to calculate the last term in Eq. (23) we use the inverse Fourier transforma-
tion and define functions b,

1

b, = ——
"N

Z 66 EmRIBELY(EST), (26)

km
oo’

It allows us to express the considered term as a sum over the nearest neighbours in a direct
lattice of the type ' D,b,. Taking into account the crystal symmetry and using the same
A

procedure as for the calculation of D,, we get

3 Dyba = % (3P1b1go—2P3bo0r) [~ 2+3(1 ~a3)]. e
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After that, we can find the anisotropy constant K. It is given by the formula
‘ 3u3
K, = _8—1—/— [2P2(1—boo1)—3P1(1—b1oo)l (28)
0

where V, is the volume of the primitive cell.
3.2. Hexagonal-close-packed structure

In hexagonal-close-packed lattice there are two atoms in the elementary cell, so the
lattice can be treated as consisting of two equivalent and interacting sublattices of simple
hexagonal structure. Then, Hamiltonian (9), which constitutes a base for our calculations,
should be rewritten in a different form including the presence of two sublattices, namely

é E sk Ckawckﬂa E E ck+mutck ~mayCr’ a;ckaf

kk m a
1 Daﬂ 6 Al T+ P
+ N [ (ck+mam' k'—mp— a'ck ﬂacka: s 4 ck +maack’ —mﬂa"ck’pa’cka:a')
kk'm aﬁ a
o+ + af,, + +
+ 6Illm Cr +mattck’ —mﬂa'ck’ﬁa'ckou] + Bm ck+ma1ck' —mﬁfck'ﬁ‘Lckau + hC} S (29)

In Hamiltonian (29) & = ZT{",?eik(’i_’i), where T7f denote hopping integrals from the

point i of sublattice a to its nearest neighbour j in sublattice § and D, A% B are the
Fourier transforms of D, A%, Bf. N denotes number of elementary cells and «, B are
equal to 1 or 2.

We calculate the mean energy of the system by using the Green function formalism.
We introduce the functions: Gy k) = €Croos c,fﬁ,))E and in the Hartree-Fock approxi-
mation, taking into account that the pseudodipolar coupling constant is small in
comparision with the parameter of intraatomic Coulomb interaction as well as to the
bandwidth, we get for one-electron energies the following formula

1
Efy = 3k+1"—a—6|:ﬂo(Do+D32)— N E &'D "k-ma]

ma’

—= (\/s,izsk1 +6 s—; D*'(k)+¢6 \/;11‘5 Du(k)) ) (30)
k K
where .
1 : :
Dlz(k) 2N D21 <ck —-m16'Ck—m20’ >7 (31)
and

21
<ckla'ck20'> =2 \/812 y‘ rlf(Ekr]) (32)

n
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S(E},) represents here the Fermi-Dirac distribution function and 7 = +1 or —1. Since
both sublattices are equivalent in formula (30) we set: ny,, = m,, 4, = U, & = ¢, and
D =D,

Next, we assume that the distribution function of occupation numbers for one-
-electron Hartree-Fock states is the same as for an isotropic ferromagnet, ie., f(Ey,)
=~ f(Epy) and calculate the mean energy of the system. We obtain

E= Zﬁkf(E )+—1(n —uo)+%2n\/ﬁézﬁflf(E 7) = HoN(Do+Dg?)

1
i z 66' D JESINESS), (33)
e
aa’ny
where
. 6f(E
Ho = 2 N
kno

We can find the anisotropy constant K; in the same way as in Sec. 3.1. Namely,
we represent Do, D, in formula (33) through the components of the radius vector r,
expressed with respect to crystallographic axes and we take a summation over the
nearest neighbour sites in a hexagonal-close-packed lattice. It leads to the result

9,“0 6')72_4
K, = 47, [P1\b1oo 1)+ m Py}, (34)
where function b, is defined as follows
1 1 Jim—k)r 100 a
by = gy O BB G9)

Smp
oo nn
and y? = c/a (¢, a — the lattice constants).

We can conclude that for hexagonal structures, the anisotropy constant K; can be
easily calculated by means of the presented method. It should be emphasized that such
parameters of the band structure as the Fermi level position in the band and occupation
numbers of one-electron Hartree-Fock states (trough function b;40) essentially influ-
ence K;.

Expression (34) allows one to draw some simple conclusions concerning the temper-
ature dependence of the anisotropy constant. In this expression the magnetization po,
the parameter y and function &, (through variation of occupation numbers and shifting
of the Fermi level) are related to temperature. An increase in temperature will lead to
a decrease in the K, constant.
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4. Evaluation of anisotropy energy for a crystal of cubic structure

In this section we use Hamiltonian (9) to calculate anisotropy energy for cubic sym-
metry. The energy density for such crystals can be expressed as follows

E = Eo+K (305 + a0l +atad)+ Kyaloalal + ... (36)

where o; are the direction cosines of the magnetization with respect to the crystallographic
axes.

For cubic crystals the energy of the system, in the Hartree-Fock approximation, does
not exhibit anisotropy. In this case, because of the cubic symmetry, the pseudodipolar
Hamiltonian does not give rise to anisotropy in the first order of the perturbation theory.
Therefore, the calculations should be carried out more accurately and higher orders of the
perturbation theory are necessary. For this purpose we suggest using the spin wave method.
The method allows one to find a microscopic formula for the constant K; as well as to
determine its temperature dependence. Such an approach was successfully used for analog-
ical investigations in the Helsenberg model [1, 12]. '

To calculate the mean energy of the system, we express Hamlltonlan (9) in terms of
creation and annihilation operators of magnons, which are denoted by B, and B, respec-
tively. We use the effective Hamiltonian method, the concept of which has been introduced
by Morkowski [15] to investigate spin waves in the presence of pure dipolar interactions
within the framework of the band model. The method has been used for examining many
-magnon processes and the obtained results have been in good-agreement with other the-
ories and experimental data [16, 17].

The effective Hamiltonian with terms up to the fourth order in the magnon opera-
tors takes the form :

He ha Z {Kq(ﬁ;ﬁq+%)+Lqﬁqﬁ—q+hc}+ Z(ng q+qﬁ ﬁ +hC)

+ Z (quq ﬁq‘l-q +q" ﬁqﬁqﬁ +hc)+ 2 lqck'ﬁ;+qﬁl-:'—qﬂkﬁk" (37)

aq9'q”’ ki'q

We assume that the Hamiltonian H, (Eq. (37)) is equivalent to our basic Hamiltonian H
(Eq. (9)) in the same sense as in paper [15], i. e., the coefficients are defined by

= <[ﬂq’ [H’ ﬂ;]]>a
L, = 3<[[H. 5,1, BZ, D,
Cog = 4 [Ber o [[H, B3 1, BETD), (38)

and analogically for higher order terms. The averages <...) are taken over the Hubbard
Hamiltonian ground state and ﬁ; operators are defined according to formula

ﬂ: = ; bk+q,kcl:—+q¢ckh (39)
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The coefficients b, are normalized to satisfy the boson commutation relation. Then
d

bpigp = —————5» 40
Ll 8k+q'—8k+A—h(D2 o ( )

= m s
= {z (8k+q_8k+A—hw2)2J( 2 41)
k.

and 4 = In. hw] denotes here the spin energy in the absence of the pseudodipolar coupling.
It can be found from the condition

u 4 =1 42)
N trsg—EtA—ho)
k

The above expressions are valid for the case of a strong ferromagnet, i. e., when all states
with spin down are empty. We will consider this case only.
Calculating the coefficients in H, according to formula (38) we obtain

5 hw2+D.,N(d"/I)2—N”‘ g Dy L1bss g il i+ M +.)

where

+ by gDk s+ gkt M) (43)
L, = B(d,/D’N-N"" T Bibuswdoow+ s o (44)
Cor =% (qu"l'aq’q)’ (45)
Cop = —A4N" ! l; Bre+ gDk + g+ (Okr 4 gk + Dic 4 g4 e+ DT

-1 / %
+ NN Apbpsgibisarq bt grgkratOrsnrqraieri+ DMk +q
e

= *
+N7UY Apbpig gt abiri+aper e Dis g s g s+ ies (46)
kk'
Fogar = % (qu’q”+Fq’q”q Fq"qq’)’ 47
= -1 ®
qurqu = '—BqN '; bk+q,kbk'+q’,k’bk'+q+q'+q",k'+q+q'bk' +q+q’+q”,k’nknk’

-1 . *
_Bq'N kzk' bk+q,kbk’+q',k'bk+q+q’+q”,k+q+q’bk+q+q'+q”,knknk'

-1 £
+ N z Bk' —k—qbk+q,kbk’ + q',k’bk+ g+qg +q ' k+q+ q’bk+ gtq + q”,knknk’
kE’

+N~ 8 Z Bk'-k-*qbk+q’,kbk'+q,k'bk+q+q’+q”,k+q+q’bz+q+q’+q”,knknk’9 (48)
where D, 4,, B, are the Fourier transforms of expressions (6)(8). It is easy to see that the

coefficients in H depend on the band structure of a ferromagnet and on the occupation
numbers of one-electron states.
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The contribution to the mean energy of the system, arising from the pseudodipolar
Hamiltonian, is evaluated by means of the perturbation theory. We neglect the influence
of the last term in H,, Eq. (37), which describes spin waves interaction (that is why the
expressions for I'j,. has been omitted). The neglecting of these interactions seems to be
completely justified at low temperatures, at which only a low number of magnons is
excited. We carry out the calculations to the second order of perturbation and get the
following contribution to the energy

aE= -2 S E
hod ~ 1

q
[Ca-dl’ z :
hqwg Nq’a (49)
q
a

-3 Z LqF:-qq’+Lth_—ﬂ’ N, — Z
h COO q
- q
q9q q

where N, denote magnon state occupation numbers. The expression AE depends on-the
direction of magnetization with respect to the crystal axes through coefficients L,, C,,
and F, .~ which are connected with pseudodipolar coupling. However, in general, we are
not able to express AE, given by Eq. (49), in a form like Eq. (36) and to calculate the anisot-
ropy constant K;. To solve the problem, it is necessary to determine the band structure
and moreover, to introduce some simplifications. We assume a parabolic shape for the
electron energy band and we assume also that the main contributions to the coefficients
L,, Copand Fyy,. are caused by long spin waves. This allows us to expand expressions (44),
(46) and (48) into a power series with respect to ¢ and to neglect terms of higher order
than ¢>. Such a procedure is valid for low temperatures. We neglect also the dependence
of one-electron state occupation numbers on g.

‘Taking into account the above approximations as well as the crystal symmetry we
obtain -for anisotropy energy of simple cubic lattice a formula

92N P?
anis = ¢ {v—xzkﬁ(% ©+4p—21)—[24v—400(% y*ki—% )
1 " .
— 1 k(116 —48x)] - Z Nq} (ofas + 303 +afe3), (50)

q
where P is the pseudodipolar coupling constant, n — the mean number of electrons

per atom, kr — the Fermi momentum and y = -#2/m*4 (m* — the effective mass). Besides,
we have introduced the following notations :

® = Aogp+a200— 20110, : (51
Vv = booo+b200—2b10, (52)
= 2(0100,100—0100,010), (53)

K= 2(d100,1oo"dioo,010), 549
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where
1 ] ' '
a = < E q*(ho) e, (55)
N |
-q ol N
1 ; -1 igr
by =+ z (hwd) ™', (56)
q
i : e ifqr ' —=k)r
el mzﬁmﬁ) (eg)e™ et by, (57)
gkk’
hke T AN Z (haog) ™ (k) (' @)™ h ™« bl (58)
gkk’

and r, is the radius vector to the nearest neighbours.
The anisotropy constant

9n%p? ‘
K, = oV, {v—xzk%(% o+ 4p—2x)
1L
—[24v—40w(% Y’ki—% 0)— x2k§(116H—48n)]HV E Nq} (59)

q

is calculated here for the case of a simple cubic lattice only. The derivation of analogous
expressions for other cubic lattices does not present any difficulties. |

According to formula (59), the constant K; esentially depends on such parameters
as the energy gap, the Fermi energy and effective mass. Moreover, by means of coefficients
Chon, and dy, 4, Ky depends on the position of the Fermi level in the band. The strong
dependence of the anisotropy constant on the Fermi level position was also mentioned
in other theoretical papers, in which more accurate approaches were used [8].

It should be emphasized that it is possible to perform more accurate calculations
within the framework of the discussed model. For this purpose, first of all, more realistic
band structures should be taken into account. However, for such structures numerical
calculations would be necessary, so we could not obtain any analytical expression for the
anisotropy constant. The calculations would allow us to estimate the constant K; and to
compare the results with experimental data.

We want to mention that, in literature, despite the use of more and more complicated
theoretical models in which not only real band structures but also many other effects
(the deformation of the Fermi surface caused by spin-orbit interaction, the existence of
degenerate bands near the Fermi level and so on) have been taken into account, complete
agreement between theoretical and experimental data concerning the anisotropy constant K,
for transition metals and especially for nickel has not been achived. To some extent,
the discrepancy can be due to the fact that the anisotropy constant K| is determined theoreti-
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cally from the expansion of free energy into a power series when constant strains are
assumed. On the other hand, the experimental measurements are usually performed under
conditions of constant external stresses. Therefore, to compare the results, one should
take into account those corrections which can ‘appear to be important.

The temperature dependence of the anisotropy constant K; has been investigated
within the framework of the band model rather seldom [8, 9]. According to our considera-
tions, it is clear that there are several agents which influence the temperature variation of
anisotropy. First of all, the spin waves cause a decrease in the constant K; with increasing
temperature. Then, the variation of the distribution function of one-electron occupation
numbers as well as a displacement of the Fermi level influence also the temperature depen-
dence of K; constant.

On the basis of these qualitative considerations, we can find that K, depends on
temperature in a different way than in the Heisenberg model [1]. Whereas calculations
performed using the spin wave method in the localized spin model lead to a well-known
power law, in our case, within the framework of the band model, the temperature depen-
dence of the- anisotropy constant has a more complicated character.

5. Summary

In this paper we have presented, within the framework of the band model, the theory
of magnetocrystalline anisotropy, based on the pseudodipolar Hamiltonian. The calculations
have been performed for the simple cubic and hexagonal lattices. We have shown that
the considered method allows one to obtain the anisotropy constants as functions of the
band parameters (the energy gap, the Fermi energy). On the basis of the derived expressions
itis possible to draw some conclusions concerning the temperature dependence of anisotropy
constants. Rough qualitative considerations show that this dependence does differ from
the power law.

The obtained results constitute evidence that the pseudodipolar Hamiltonian can
be successfully used within the framework of the band model for describing the magneto-
crystalline anisotropy in all problems in which anisotropy is important and other methods
are ineffective. One of the examples is an investigation of domain structure. We will under-
take this problem in a separate paper.

I am deeply indebted to Professor A. Sukiennicki for helpful and stimulating discus-
sions and for a critical reading of the manuscript. I would like also to thank Professor
S. Szczeniowski for reading and correcting the manuscript prior to publication.
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