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The purpose of this study is to formulate the band model of ferromagnetism in a form
permitting the description of domain structure in ferromagnetic thin films. The results ob-
tained from the band model approach are in qualitative agreement with those given by classical
theories, for the domain and domain wall width. However, the present approach also allows
'to investigate the influence of new factors connected with the band character on domain
wall properties. Calculations using the band model lead to relations between MiCroscopic
and phenomenological constants characterizing the domain structure.

1. Introduction

Until recently there did not exist any general theory of domains which would
give a complete distribution of magnetization inside a sample. It was possible only to
calculate parameters of domain structure assuming its shape based on experimental
indications. The parameters of such a structure have been calculated mainly by methods
based on the minimizing of the phenomenological energy of a crystal [1]. Recently, some
attempts at general formulation of the theory of domain structure were made on the basis
of conformal mapping [2]. On the other hand, the theory of domain structure for the Heisen-
berg model of ferromagnetism has been derived by means of two methods: 1. by mini-
mizing of the energy considered as the average value of the: Heisenberg Hamiltonian in
a class of especially chosen states [3], and 2. by treating the ferromagnetic state with
domain structure as a state with the minimal free energy obtained by the second quanti-
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zation method [4]. Recently, the distribution of magnetiatizon directions in ferromagnetic
domain walls was also obtained from the itinerant electron model of ferromagnetism [3, 6].

The aim of this paper is to present a simplified formulation of the band model of
ferromagnetism in a form permitting the description of the domain structure of a sample
at zero absolute temperature and to apply this formulation to thin films. From the experi-
mental point of view as well as from the theoretical considerations, uniaxial monocrystalline
ferromagnetic thin films are the most convenient samples for investigations of domain
properties. Therefore, the aim of the considerations of this paper is to describe domain
structure in thin films. As a result of our theory, the parameters characterizing the domain
structure are obtained in terms of the band theory. In this manner, the relations between
microscopic and phenomenological constants are found.

2. The Hamiltonian

We assume that in the band model of ferromagnetism the Hamiltonian of a ferro-
magnetic sample with domains contains three parts: the one-band Hubbard Hamiltonian
the magnetic dipolar term, and the term responsible for the anisotropy effects.

1. The one-band Hubbard Hamiltonian applied to thin films [7] is of the form

”Hubb = E é H ( ) cv;m v'Jj’ m+I E cvﬁcvﬂcvh vjp (U

viviity

where ¢ “m denote respectively the creation and annihilation operators for an electron
with the spin m = 1(]) at the point j in the layer v of the film. I is the intra-atomic
Coulomb integral and the coefficients H( ), determined in [8], are related to the matrix
elements of the electronic potential in the Wannier representation. The sum over {vjv’j">
is limited to the nearest neighbour lattice sites only.

2. Usually the new operators S, S3;, 3> are introduced by means of the relations
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The operators Sy;(x = X, y, z) satisfy the commutation rules characteristic for spin
operators. Thus, we can interpret them as the operators of the spin at the point (vj). In
terms of these operators we can introduce the part of the Hamiltonian corresponding
to- the magnetic dipolar interactions of electrons [9] by the formula:

#y = 4 (gh)? f j drd
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(3)
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where g is the gyromagnetic factor and f denotes the Bohr magneton. Here, the relation
S = L SueG =7 @

between the magnetization operator M= ﬂS at the point 7, the spin operator S‘, ; glven

by (2), and the density of electrons g(r o ;) centered at the point (vj), is assumed Then
we can rewrite formula (3) in the form

c%m = '% (gﬁ)z zﬁ: Z N:Ijv ’ i S:_)S€J > g : (5)
af vjv'j . )
where
N . o v . = 5 ﬂ 1
Nvaj . d’rd’r Q(r_rvj)g(r' Ty 7 )V V ' . (6)

denotes coefficients dependent on the geometry of a sample and on the density of
electrons contributing the magnetic moment. .
3. We assume the anisotropy term of the Hamiltonian in the following form

‘%oanis =—K Z <S:1>Sip (7)
v

where K is the parameter describing the uniaxial anisotropy energy and {85;> denotes
the average value of S5; taken in the ground state of the sample.

We must realize that the real anisotropy results from various physical causes (e.g.
spin-orbit coupling); however, instead of considerating these causes, it is sufficient for
our purposes to assume that the part of the Hamiltonian responsible for anisotropy is
in the form of expression (7). This kind of anisotropy term plays, as we will see in Section 4,
just the same role as an uniaxial anisotropy with the easy magnetization axis directed
along the z-axis [10], and it is formally equivalent to the term which was introduced into
the band model by the molecular field approximation of the isotropic Hubbard Hamilto-
nian [11]. The relation between the parameter K and the microscopic causes will be the
subject of a forthcoming paper.

In this manner, we take as a starting point of our paper the Hamiltonian which
consists of the hopping term, the intraatomic Coulomb interaction term, the term
corresponding to the magnetic dipolar interactions and the term responsible for the
uniaxial anisotropy, namely

H = E H ( V] ) CojmCyvj m+I S VJTCV.I‘I‘CVNC"H

m{vjv'j"y
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3. Domain structure

We consider an uniaxial thin film with its easy magnetization axis lying in the film
plane. If the uniaxial anisotropy is large enough, as is assumed in the following, we can
expect that domains have the form of magnetized stripes parallel and antiparallel to the
easy magnetization axis and they are separated by 180° Néel or Bloch walls. For smaller
anisotropy the so-called closure domains can appear; we neglect this possibility. The domain
structure is considered as a one-dimensional screw structure in which the magnetization
at the point (vf) is rotated by an angle 3,; dependening on one variable only. The axis
of this rotation depends on the type of walls. For the Néel walls the rotation axis is per-
pendicular to the film plane and for the Bloch walls — it is perpendicular to the plane of
walls. We assume a coordinate system in which the z — axis is directed along the easy
magnetization axis of the film and the y-axis along the rotation axis of the magnetization.
Taking into account that we consider the one-dimensional walls, the angle 9,; depends
on one variable only, namely on x for the Néel walls and on y for the Bloch walls.

4. The Hamiltonian of a thin with domain structure

The Hamiltonian (8) describes the magnetic properties of uniaxial thin films magnetized
homogeneously. Now, with the help of it, we construct the effective Hamiltonian of a thin,
film with the domain structure assumed in the preceding chapter.

For this reason we introduce new operators bvij,,, defined by the following relations [12]:

3, 3,;
cvjm = COS -—2—{ bv1m+m sin 7‘1 bvj—m’ (9)

wherem = + 1 for spin up (1) and — 1 for spin down (]). The transformation (9) introduced
here is equivalent to the rotation of the spln operator S;; around the y axis, namely

= ¥ RIS, (10)

where the matrix of this rotation is the following
cos 8,; 0 —sin 3,;

R.=10 1 0 , (11)

v

sin 9,; 0 cos 3,;

and S"}; is the o- component of a spin operator expressed by the operators b%, in the
same manner as Sy; by c”m (see the formula (2)). This fact allows us to interpret the
angle 9,; as an angle between magnetization at the point (v/) and the easy magnetization
axis. So the meaning of the angle 9,; is the same as in the phenomenological theory.

It is necessary to remember that the y-axis is perpendicular to the film surfaces for
the Néel walls; then 9,; is a function of x only and the y-axis lies in the film plane for the
Bloch walls when 3,; depends on y only.
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If we.introduce the local spin operators S’;; (¢ = X, y, z) defined by

;Jj‘ =} (b:;'tbv_jt"'b;;tbv—j;)s
’ i + 7. - + 73—
Sv? a —5 (bvjt vit™ bvjrb\rﬂ)’

33 =% (b:},b@,——b:}lbv_j‘), 12)

and substitute the operator ¢, represented by (9) into (2), we obtain after easy calcula-
tions that

v = Sy;cos 3,;+87;sin 8,;, ST =S},
Sy; = S;;cos 8,;,—S;;sin 9,;. (13)

Thus, the transformation (9) is equivalent to the rotation of the spin operator S5; around
the y-axis.

Now, we would like to notice that it is a well known fact that the Coulomb interaction
term of the Hubbard Hamiltonian is invariant with respect to the transformation (9),
namely

I Z ConConConCon = 1 Z boibibynbae (14)
vj vj
while the term (7) can be transformed in the following way

(S%8%; = (SyEySiE cos® B+ (SEYS,E cos 8y sin 9, (15)

if we take into account that {(S’};> = 0 (because {S'5;> = S,;). As a conclusion we can see
that the fomula (7) does represent unixial anisotropy term (as well as some other term
which is irrelevant for final conclusions of this paper).

Substituting (9) and (10) into (8) we obtain the Hamiltonian of a thin film with domain

structure
7t 8‘: N ‘9"’ .
H = H (VJ ) {( b\;;mb;j'm) Cos S
: ; vj : / Y, 2

iv'iy .
- — N Dy
O3~ b sin 20
+IY nyn;+1(@B?Y. Y Y N%, RERU.SESE,
s vttt viv ity B ROV R
vi

ap B’ vivj'

—K Y <S> cos 9,555 cos 9,;+ Sy} sin 9,,)). (16)
vi
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Applying the molecular field approximation to the Hamiltonian (16) we obtain the effective
form of the Hamiltonian of a thin film with domain structure in a form which will be used
in the following Sections:

8 . ""'\9 :
- F AU st

{viviiny

N 9 -39,
+ (b:;tbv 7' bvnbv TONUE 2 } + I LJ [y + <"vn>”vn]

+(gh*Y Y X N RGRELSEHSY

af & \p'=z vjv'j’

—K Y (55 cos 8,(Svz cos 9,;+S,) sin 9,)), 17
vi

where K is a parameter of the theory in its present form.

5. The average value of the Hamiltonian

We assume that the transformation
b\:m Z vj,th thm (18)

leads to the diagonal form of the Hamiltonian (17) for the homogeneous distribution
of magnetization with respect to its direction i.e. for 3,; = 0. It is a well known fact that
for a bulk body the coefficients T}, are such that the transformation (18) constitutes
the Fourier transformation. In the case of thin films (considered as one domain sample)
these coefficients are the following

oL

Lo
vjth = ﬁrvte > : (19)
where N denotes the number of atoms in a layer and I'y, are the electron eigenfunction
amplitudes on the direction perpendicular to the film [8]. Now, we assume that the trans-
formation (19) is a good approximation also for thin films with domain structure. Then
the average value of Hamiltonian (17) at the zero absolute temperature can be determined
by the quantum mechanical mean value taken for the ground states |0) for which the
eigenstates b;,|0> lead to the diagonal form of the Hamiltonian. We find that

) = 212 Cnygy <> +(8B)° 2, Nujwi<Si> <80 —K Z (8yi»? cos? 8,

viv'y’
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where
By yw> =3 T3 Ty enl Do » 1)
and
Nyjwy = azﬁ Ny 7 RVRY. (22)

In our approximation, given by formula (19), we have

i 1 z T T ot i’ -
<b\-!:'mbv'j'M'> = .Z_V; eh(l ! )thl v’t<b;ltnbthm’>' (23)
th
In the forther text we consider the case of the domain structure with Bloch walls only.
For the Néel walls it is sufficient to change the coordinate system, i.e. to change x == y.

Then, the angle 9,; depends on y only. We take into account that the change of the angle X
per one lattice constant ¢ (simple cubic crystallographic structure is assumed) is very

small. Then we have
1 .2 d9 2 ter . q
1—-5a°{— for Vj' =wv,jti,a,

d
9., —9.. y
cos —"—’-—2—-3 = . (24)
1  otherwise
ds .
ta— for Vj' =v,jtia
9 0—9.. dy
. v j vj _ .
sin L e = (25)
0 otherwise

and we can change the sum over j, into an integral according to the formula

! - Lyd 26
EZ(...HE{ (..., (26)
Jy 0

where L, = aN, is a dimension of the film along the y axis. Then, the average value of
the Hamiltonian at absolute zero is

V td
o> = Ho>+ 7 de-‘f(S(y)),
yO
79\2 - 2
LO0)) = {a (d—‘g) +a (i‘cf) ¥ 2 sin? g4 ) Z .Nv,-w,-'}, @7
dy dy a a® L ‘

Iy
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represents the part of {(#”) which does not depend on the angle 9,;, ¥ = N,N,N,a*, and

1 : v'j' =T rm
Eihm = N H ( vj) elh(J Y )thrzfr (29)

vty
B v,jti,a
N % Z (blmbimd cos hya, B = —H( Je ) (30)
! 4 B o ol A 4ot + -
o = N ; [erv'c<brh1brh&>—thrv’r<brh1bth;>] COos h_va (31)
i
NVJ':"'J = Z szv A Rj:Rfj (32)

In the further text the term with «’ can be omitted since the minimalization procedure
does not depend on the linear expressions with respect to the derivatives of the angle 9,;
treated as a function appearing in the functional (27).

Now, it is possible to obtain the approximate form of the average value of the Hamilto-
nian (27) by introducing the demagnetizing factors. Namely, treating the region of lattice
points (v'j") which give a significant contribution to the demagnetizing field in the lattice
point (vj) as an ellipsoidal region, it is possible to assume that this field is independent
of (v/j') and is proportional to the magnetization at the point (vj). In this case, the pro-
portionality factors N** (« = Xx, y, z) between the demagnetizing field at the point (vj)
and the magnetization at this point are known as demagnetizing factors. They are defined
by the equation

Z {2 NVJV i Rijfzy} a Z (R‘z)ZNm
V.

= N,N,N(N**sin® 9,;+ N** cos? §,). (33)
Then

dg\? dd K 2

2600 = o(2) +o (L) + X sin? 9+ (gﬁ) VIN™ sin? 9+ N* cos 8] (34)
dy dy a

on the lowest level of approximation with respect to the angular distribution of magnet-

ization.

6. Existence of domain structure at zero absolute temperature

As the first consequence of formula (34), for the mean value of the Hamiltonian we
show that the domain structure assumed in Section 3 does exist. To this purpose we assume
(a) that our domains in the form of stripes with the widths 4 can be treated as ellipsoids
magnetized along the + z axis, (b) that the regions of domains walls can be neglected,
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(c) that the interaction between domains can be neglected. In this case, inside the domains we
have cos2 3 = 1, sin2 8 = 0, and we can assume classical demagnetizing factor [13] as

nf2
2r 4 L, sin? pdg ] <A )2
= , e=1— .

—r = (35)
vV Lz Lz s \/1—62 Sil’l2 @

L

z

Here, when the width of domains A is comparable with the dimension L, of the film along
the z axis, we have e~ 0 and

n® AL,
[=~J W TZZ o

NGz (36)

If there are s domains in the film, i.e. L, = s4, the average value of the Hamiltonian (34) is

N (a®  (gp)* =* AL,
H> = H L k> Bt
A =< °>+4{AG+ a® 2 Li}’

1 T (ae\: (a9 . o
=5 J[5) =)o =
0

répresents the energy of the wall per unit of the wall surface. Minimizing (37) with respect
to 4 we get

(37

where

DI Rar Vin e
-2 e 3o (39)
n gf L
From formula (39) it is possible to obtain the critical film thickness L™ above which
the domains exist. Namely, for films with L, = L, from the condition 4 = L, we obtain

. 2(aV
JESE = P(E) o. (40)
It is worth-while to notice that this result is in complete agreement with the result of the
phenomenological theory [14], as well as with that of the theory based on the Heisenberg
model [15]. In formulae (39) and (40) o denotes the energy of the wall with zero width.
It is not a real case, of course. Therefore, in the next Section we consider the structure
of domain walls, and the wall energy ¢ obtained for this structure is substituted into (39)
and (40).
7. The Bloch and Néel walls

We consider now the structure of the Bloch walls. For this purpose we assume that
the Bloch walls with the width &z can be approximated by infinite cylinders magnetized
along the x axis. We neglect the interaction between walls as well as between walls and
domains. In this case we have [13]

1 d
V 8g+L, "

sz . 0’ Nxx - 47_[ (41)
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Then, the average value of Hamiltonian (34) is o3 a6 g

+4/2
14 ds\?
(HY = Ho>+ i J “dy {A(;) + R sin® 3} > (42)
—4/2 8 y
where
A=*%a B 9 ¥ 43)
K gB\* 4ndy
R = 1 =y — " .
4|:a3 +(a3> 6B+Lx (44)

The minimization of formula (42) leads to the equation

_d?9 . _
24 —3 —Rsin 28 =0, (45)
dy

The solution of this equation with the periodical boundary condition § = n(n—1) for
y=m—-DA4, (n =0, +1, +2, ...) can be written as

[ZK(k) ]
cosd = sn yi.
A

()

Here sn denotes the elliptic sine function and K(k) is the complete elliptic integral of the
first kind with the modulus k connected to the domain width 4 by the relation

kod = 2kK(k), (47)
where
R
C = _— 48
Ko \/ y (48)

Taking into account that for real situations dx, > 1, it is a good approx1mat10n to sub-
stitute &k ~ 1.
Now, we can obtain the width of the Bloch walls

T i3 4
5 e o . 1___ —Axoy1/2 ~ = 49
dy/s=n2
and the wall energy per unit of the wall surface
1 1 4 — g :
os=4 {R (1— 7;5) + - 7 B \/AR} ~ 4 /4R, (50)

where E(k) is the complete elliptic integral of the second kind.
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Taking into account formula (44) we obtain for the Bloch wall width the equation

oy m( A\ 4nM; 55 \TV?
2 T[S R e I ARG (s1)
a al\K, K/4a® déz+L,
where Ms = gSa— and
K, = K(4a*)~S. (52)
To consider the Néel walls we assume that the Néel walls with the width y can be

approximated by infinite cylinders magnetized along the x axis and we neglect the inter-
action between walls as well as between walls and domains. In this case we have [13]

L,
N==0, N’=4n— —2_, (53)
V L,+0y

If we make the formal substitution x= y in all formulae for the Bloch walls we get for

the Néel walls
oy _m A\ 1+4nM3 L, 7Y 54)
a a\K, K, Ly+oyf

We can see from formulae (51) and (54) that the results of the band theory are in
complete agreement with the results of the phenomenological theory [16] as well as with
the results of that based on the Heisenberg model [17]. From the comparison of the last
result with our result in the present paper we can see that the pseudodipolar anisotropic
constant C [17] plays the role of the microscopic anisotropy parameter K and the role
the role of the Heisenberg exchange parameter I [17] is taken by

1
A= = Ba™! E {Nypmy €OS hya (55)
thm

of this paper. Taking into consideration the condition of the minimum of the average
value of the Hamiltonian for a given film thickness we can-obtain the critical thickness
below which the Néel walls are favourable and above which the Bloch walls occur.

_However, in the framework of the band model, the influence of new additional
factors on domain wall properties can also be investigated. One of these factors is connected
with the inhomogeneity of spontaneous magnetization across a film, which appears in
the band model even at T = OK [7]. Taking into account the spatial distribution of magnet-
ization in the particular form given in [7]

1 1 6,,+6
S =14 - — — =22 56
% +27m 2r 2 (56)
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we obtain

! st = 14 —(1- 2 a - S =1
D G I DI L

v

Then, we can see from formula (22) that the functional (42) retains its form, but instead
of the coefficient R the changed coefficient R must be introduced for the Bloch walls:

K[ a 2a gB\* 4ndy
R=%}{—5|1+ ;51— — Sy ) 58
{a [ e (-2 (5) o &

In consequence, the effective anisotropy constant Ku determined by (52) must be corrected
by the factor in the square brackets of (58); this factor is a function of the film thickness
Thus, the slope of the Bloch wall width vs film thickness curve is greater than in the case
when the spontaneous magnetization is considered to be homogeneous. This fact is in
qualitative agreement with some experiments concerning the domain wall width [18].
However, the values of the Bloch wall widths measured by means of Lorentz microscopy
are still too large in comparison with theoretical ones (this is caused, of course, by the
inelastic scattering of electrons [18]). The decrease of the Bloch wall width calculated
here depends on the surface conditions and is more important when the surfaces are not
magnetized. In particular, the appearance of magnetically dead layers [19] enlarges the
domain wall width. Effects described above appear, of course, also for the Néel walls.

Another effect which can be discussed only for the band model approach is the depen-
dence of the stiffness parameter 4 on the film thickness and surface the conditions [20].
This parameter decreases for very thin films and so leads to a decrease-of the domain wall
width if the film thickness is below some critical value [20]. Fortunately, the Bloch walls
are usually observed above this critical value, where the stiffness parameter is practically
constant. For special surface conditions [20], however, we should expect a drastic jump
of the domain wall width in the region of the critical value of the film thickness.

Moreover, it is worth-while to notice that there is one more effect which can be
treated only in the framework of the band model, namely, the distribution of the quantiza~
tion axes in domain walls for different states of electrons. This effect was investigated
separately [5] and will not be treated here.

8. Conclusions

For simplicity, three basic approximations are used for the formulation of the problem
in question: '

1. Instead of the real Hamiltonian responsible for anisotropy effects in the band
model of ferromagnetism we use some kind of an effective anisotropy Hamiltonian, the
form of which is based on the argument of utility only.

2. We take an approximate form of the diagonalization procedure assuming that
the diagonal form of the Hamiltonian is assured by the Fourier transformation in the
film plane (both along the domains as well as across them) and a special transformation
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in the direction perpendicular to the film plane. From the calculation for the Heisenberg
model we know that the Fourier transformation in the direction across the domains
constitutes only the first approximation in the sense of the perturbation. theory to the
complete diagonalization. In the light of the more rigorous recent considerations given
in the paper [21] we can see that the mentioned approximation is fully justified.

3. The long range magnetic dipolar interactions are treated by means of demagnetizing
factors which is a good approximation only for a one ellipsoidal domain. From phenomeno-
logical theories we know that such kind of approximation is only qualitatively justified
in our case and that realistic solutions are much more complicated than those found in
this paper.

Apart from these simplifications, without which the problem in question would be
very complicated, we can say that the formulation of the band model in a form permitting
the description of the domain structure in thin films at zero absolute temperature is really
obtained in this paper and that our qualitative results are in complete agreement with
those of the classical approaches. In particular, parameters characterizing the domain
structure (the domain width 4, the wall width J, the wall energy g, the critical thickness
above which the domain structure can exist) were calculated.

Moreover, our theory allows us to obtain the stiffness parameter 4 and to find the
relation between the Heisenberg exchange integral I and the hopping parameter B of the
band theory. It is very interesting that the stiffness parameter 4 depends on the film
thickness as well as on the surface conditions. We were able also to obtain the film thickness
dependence of the effective anisotropy constant. Finally, it is worth-while to notice that
our approach allows us also to consider other effects which can be explained only in the
framework of the band model approach. We can mention here the distribution of the
quantization axes in domain walls for different states of electrons, which was investigated
separately, as well as the dependence of the demagnetizing term on the electronic distribution
inside the elementary cell, the role of which will be important only when the exact quantum
mechanical approach to the demagnetizing field will be successfully applied.

The authors would like to thank Professor S. Szczeniowski for reading the manuscript
and for his interest in the presented paper.
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