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This paper presents a new procedure developed for the pumerical processing the inter-
ferograms obtained by a side-on observation of axially symmetrical plasma discharges.
Experimental results presented as a set of numerical data, are approximated by the least-
-squares method employing even Legendre polynomials only. The appropriate number of
terms in the polynomial expansion is chosen by means of the statistical Fischer test adapted
to the even polynomials employed. Since the resultant approximation function is also an
even polynomial, the inverse Abel transformation is performed by means of a formula es-
pecially derived for the case considered. The application of the method developed is exempli-
fied by calculations of the electron concentration distribution on the basis of a typical plasma
interferogram. The results of calculations are compared with those obtained by means of

other methods.

1. Introduction

In order to determine the electron concentration distribution for a quasi-symmetrical
fully-ionized plasma on the basis of interferometric measurements performed perpendic-
ularly to the axis of symmetry, it is necessary to solve the Abel integral equation

.

R
_eh [ ndodr

y

or to compute the inverse transformation

ne(r) = -

R
2 [dS(y) dy
i)

=]

M

@

* Address: Instytut Badan Jadrowych, §wierk, 05-400 Otwock, Poland.

(293)



294

where S() is the relative shift of the interference fringes, n,(r) is the electron concentration
distribution within the region 0 <r <R, 1 is the wavelength of transmitted light,
o = e?/m,c? is the classical electron radius, and R is the over-all radius of a plasma column.

None of these equations can be analytically solved in general. An analytic solution
can however be found if the unknown function #,(r) in Eq. (1), or the experimental data
function S(y) in Eq. (2), is a polynomial.

The first group of numerical methods used for solving the Abel equation is based
on the division of the plasma cross-section into circular zones of equal width, and on inter-
polation of the data function S(y) or an unknown function #,(r) in each zone appropriately.
The step interpolation of the function n,(r) was used, e.g., by Maecker [1]; the linear
interpolation of the same function has been employed by van Voorhis, and a parabolic
interpolation of the data function S(y) — by Weyl. The last two methods have been
described by Weyl in the monography edited by Ladenburg [2]. The calculations in Weyl’s
paper contain however an error and in the final formula the factor two is omitted. The
Weyl method has also been used by Nestor and Olsen [3], who avoided Weyl’s error
and tabulated the proper numerical coefficients. A parabolic interpolation of an unknown
function was used by Frie [4]. Gribkov et al. [5] used another parabolic interpolation,
but it gives correct results only in special cases. To increase the accuracy of interpolation,
use was also made of higher-degree polynomials, e.g., Bockasten [6] has increased the
degree of the interpolation polynomial up to three. Unfortunately, all those interpolation
methods are sensitive to6 small random errors in the data. Since the equations used involve
recursive relationships, such errors can propagate in succeeding calculations.

To reduce the influence of small random errors in the experimental readings, use
can be made of a smoothing procedure based on the least-squares method, and an approxi-
mation polynomial can then be inserted into Eq. (2). In some earlier papers [7, 8] the
mixed interpolation-approximation technique has been used; a polynomial of low degree
has been fitted to a large number of experimental points and the smoothed data have
been integrated in the zonmes, as described above.

In the recent papers [9, 10], to approximate the experimental readings, high-degree
polynomials are used. The orthogonal polynomials are then preferred because their Gram
matrix is di-gonal, and coefficients in the polynomial e¢xpansion can be easily found.
Accuracy of calculations can be also increased. Such a method was, e.g., employed by van
Trigt [9], who used an approximation function in the form of an infinite series of the
Legendre even polynomials. High-degree power polynomials have been employed by
Mermet and Robin [10]. They have however used all (not only even) powers. For such
a function the Abel inverse integral (2) can have a singularity at r = 0. The same objection
can apply to the paper presented by Zaharenkov et al. [11] who have used polynomials
orthogonal over a discrete set of data points. The main purpose of this paper was to eliminate
the disadvantages discussed above. The paper presents a least-squares smoothing procedure
which uses a set of the Legendre even polynomials only, and enables the number of terms
in the approximation expansion to be fitted on the basis of the Fisher statistical test [12].
This test is especially adapted to the even polynomials employed. Moreover, the Abel
inverse transformation formula for even polynomials is also derived.



295

2. Smoothing procedure

Experiméntal results are presented as a set of numerical data (y;, S;), where i = 1, 2’.“”;.
and n denotes the number of measurement points (y..; > »;). The actual axis of the dis-
charge can however be different from the mechanical axis of the experimental chamber,
and some perturbations in rotational symmetry of the discharge can also occur. Therefore
the experimental distribution S; can differ from the symmetrical one and the problem of
locating the axis of the interferogram is of particular importance.

In this paper the axis of symmetry is chosen as the abscissa of the centre of gravity
(the weighted mean value) of the experimental distribution S;, and it is given by the formula

3)
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where
R, = sup [(9,— ), F—»1)] (5)

2.1. Approximation

After the transformation described above the data are approximated by a function
W(¢) expanded into the Legendre polynomials Pi(£) [13]. On account of axial symmetry,
the even polynomials only are taken into account, and the smoothing function is written
in the form ' ’

W®) = 3, aPa(®). ©

For fitting the above function to the experimental data, the least-squares method is used.
Then the coefficients in expansion (6) are given by
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In order to compute these integrals, the Lagrange parabolic interpolation of the
experimental data is performed. For convenience of computations, the Legendre poly-
nomials are presented in the form

P& = Z P"‘)ﬁl (&
where the coefficients are
~ 2k+1 k
-0 — 0 _ 0 o _ 1, (k+1) _ k) _ (k—1)
D P-1 Po 1 i+l - Pi-1 k+1 D »
[=0,1,.., k+1. (9)

Appropriately, the even Legendre polynomials are
. i .
Pyyd) = j;o pEEH. (10)

2.2. Determination of the degree of the approximation polynomial

It should be noted that with an increase in the number of terms used in expansion (6),
the accuracy of the approximation increases and so does the variance of the approximation
function

2 /4
DA[W,(&)] = o* Z Eal) 1y
Cap
h=0

where o is the standard deviation of any of the coefficients a5, This formula is easy obtained
from Eq. (6) by applying the law of random errors propagation, and using the condition
of orthogonality [12]. Therefore, it is necessary to determine how many terms can be
reasonably used in expansion (6). To verify the 51gn1ﬁcance of successive coefﬁcwnts
in Eq. (6), use can be made of Fisher’s statistical test adapted to the polynomials employed.
Fisher’s test for an approxunatmg polynomlal Wlth all (not only even) terms can

be written in the form

a2 .
F= _;______(n 1_4) Fln 1-ra (12)

Z dicy

k=r+1
which is a direct consequence of formula (7)- g1Ven above and the relations (256), (250),
and (253), given in the handbook by Hudson [12] The index of the last term in the approxi-
mation polynomial can be equal to or less than n—1. The value Fy ,.,_,, tabulated in
Hudson’s handbook and all modern statistical tables, e.g. [14], is chosen in such a way
that the probability of exceeding it by F is less than a (e.g., @ = 5%). If relation (12) is
fulfilled the coefficient a, can be neglected, and the calculation has to be repeated with r
replaced by r— 1, until the inequality is not satisfied: Then the reduced value of r is inserted
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in place of m. This procedure usually starts with r = n—2, since the coefficient «, for
r = n—1 is assumed a priori to be a negligible one.
For approximation by even polynomials only the index of the last term in the expansion

l:n_l] ‘ <n_—
can be| —— |==entier
2 daf

n
nator of the expression in Eq. (12) is |: 3

1 :
> instead of (n—1) and the number of terms in the demomi-

]—p instead of (n—1—r). Then Eq. (12)

takes the form

a3 c,, -1 '
=T (F]-2) <25 .
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where

3. Inverse Abel transformation

For the convenience of computing the integral in E q (2), the approximation function
determined above is presented in the form

Wa() = j;o by ;& (14)
with the coefficients
Z azps - (15)

The positive zeroes of this resultant polynomial can easily be found, ‘and their minimum
value is considered as the radius Rg of the plasma column (in the normalized scale). In
rare cases W() has no real roots in the interval (-1, 1). Such a situation ean be handled
by choosing for R, the point in the interval (0,1) which corresponds to the local minimum
of W,,,(é).~

m(

Appropriately, the - denvatIVe —d—— is expressed by

aw, | .
dé(é) Z 2 széZJ 1 (16)
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After substitution of the above expression into Eq. (2), integration can be performed
according to the formula

R ji—1
2j—1 . 2(] 1—h) 2 h+—}
yoTdy Jj—1 (R*—r*)"*3
— = - L 1R,
Jyr—r? Z( h ) 2h+1 2fR.7) (1)
which is a special case (j = s+1,¢ = 1,a = —r?) of the general relation

2s+1 - s— h 2h
y u E : (—a) :
dy = —— d . - 2
j w VT e <h> 2hel \/C,H_cy (18)

which can be proved by means of mathematical induction. In the normalized scale given
by Eq. (4), the radii R and r have to be replaced by R; and r,, respectively.

Consequently, the radial distribution of electron concentration can be expressed
by the formula

m .

2 .
ne(rg) == —@—/'L Z 2]b2 2 j(Rg, ":) (19)

ji=1
where on account of the initial normalization 0 <r, < R; < L. To determine the real
linear scale for the distribution computed one should also calculate the values

r=rR,/M and R =RR/M (20)

where M is the magnification coefficient for the interferogram processed, and R corresponds
to the actual radius of the investigated plasma column. Finally, the radial electron con-
centration distribution is given by

n(r) = n(roMR,. 1)

4. Applications

The procedure described above has been used for numerical processing of the plasma
interferograms obtained with the F-20 Plasma Focus Machine [15, 16]. An example of
such an mterferogram ‘taken with a Mach-Zehnder laser interferometer, is shown in
Fig. 1. Fig. 2 shows the expenmental readings of the interference fringe shifts at a distance
10 mm from the electrode edge, and the approximation curve correspondlng to the smooth-
ing polynomial W(¢) fitted by the method described above. The radial distribution of
electron concentration computed by the method presented in this paper, and the results
of calculations performed by other methods, are given in Fig. 3. All the figures shown
together have been drawn according to the same scale. When the interpolation methods
were employed, the computations for the left- and right-side of the interferogram have
been performed separately. For such methods the results at r = 0 can of course be different
for the left- and right-side of the interferogram, as shown in Fig. 3.
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Fig. 1. Interferogram of the dense plasma produced in the F-20 Plasma-Focus Machine
Fig. 2. Relative fringe-shift and the approximation polynomial found for the plane z = 10 mm (from the
electrode edge)
Fig. 3. Comparison of the results of calculations performed by various methods using the interferogram
shown in Fig. 1
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5. Conclusions

The procedure presented above is also suitable for axially symmetrical plasma dis-
charges for as well as those, in which some deviations from axial symmetry are observed.
For such quasi-symmetrical discharges the procedure discussed gives an averaged distri-
bution symmetrized and fitted by the least-squares method. Moreover, the resultant
distribution has no singularity at r = 0.

The procedure developed especially for interferometric studies, can also be used for
calculations of plasma parameters on the basis of optical spectra obtained by a side-on
observation of plasma discharges.

The authors wish to thank their colleagues from the Plasma Physics Department,
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are due to W. Wojciechowicz and Z. Sypniewski for help in performing the numerical
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