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Applying the pseudopotential method, the electronic structure of InsSn alloys in
B-phase is determined for 16.2,20, 25.03, and 307 of Sn atomic concentration in the alloy.
The calculations are based on the model pseudopotentials of Animalu and Heine for indium
and tin which, for the unordered structure of the alloys analyzed, are used to calculate the
pseudopotential of the mean crystallographlcal lattice. Numerical solutions of the band
structure of the alloys are derived for the ¥ values in the directions T-U, U-X, I-W, W-T,
N=W determined by the symmetry points of the Brillouin zone and in the directions U- C
S—B and S—-D additionally chosen in the Brillouin zone. The electronic structure of In;Sn
alloys is characterized by the presence in the third band of an electron cigar-shaped pocket
of the Fermi surface.

1. Introduction

In recent years, the pseudopotential method has been successfully applied to the
electronic structure analysis of metal alloys. The method has proved effective with regard to
metals, for a number of which model pseudopotentials are at present available [1]. The
latter have been applied, e. g., by Hughes and Shepherd [2] and Ashcroft and Lawrence [3]
to determine the band structure of indium. The method is applicable as well'in determina-
tions of the electronic structure of metal alloys. Thus, it has been applied by Hughes,
Shepherd and Gaulton [4] to dilute indium-tin and indium-lead alloys containing 0.17 %,
of tin and 0.60%, of lead, respectively. The authors [4] proved the necessity of introducing
a pseudopotential dependent on the concentrations of the components. Even if the alloy
is highly dilute, so that the concentration of one of its components does not exceed 0.17%,
the “rigid model” fails to yield correct results unless the pseudopotential is not dealt with
as a function of the concentrations of the components.

In this paper, we determine the electronic structure of indium-tin alloys (In3Sn) in
the f-phase. Our analysis bears on alloys of the concentrations: 16.2, 20, 25.03, and 30
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atom percent of tin applying the method of pseudopotential and taking into account the
change of the latter, the change of the lattice constants!, and the change of the Fermi
energy Ep in their dependence on the tin concentration of the alloys.

2. The crystal lattice of indium-tin alloy in the B-phase

Indium-tin alloy in the f-phase possesses a pseudotetragonal lattice [5, 6]. This is
a disordered alloy [7], and the probability of occupation of a given lattice node by an indium
atom is proportional to the indium concentration of the alloy, whereas that of occupation of
a node by a tin atom is proportional to the tin concentration. We refer to the set of these
lattice nodes as the mean crystal lattice which, in the case of In;Sn alloy, is a space centred
tetragonal one. The values of the lattice constants of the alloy as functions of the atomic
concentrations of the components are known from X-ray determinations [5, 8]. These
data, as well as the disordered structure of the In;Sn alloys, led us to the pseudopotential
method of In;Sn band structure determination, consisting in the following.

The pseudopotential matrix element for two arbitrary plane wave functions can be
expressed [9] in the form

k+glolky = (UN) 3, &+ Gloy Ry +IN) Y, e Tk +Gloyky. (1)
i) i@
In the first and second term of Eq. (1), summation extends respectively over nodes occupied
by indium atoms 1 and tin atoms 2. N denotes the number of all atoms; <%+ qlcu1 |k> and
<k+qlws)ky are the pseudopotentials for indium and tin, respectively. For g taking
values of the reciprocal lattice vectors

]_én = nlz;l +n2_b'2+n3l—;3 (2)
where
= 2n+ 2x-+ 2;..
by = —i+ —j— —k,
a
= 2+ 2m- 2m.
by =—i— — j+ —k,
a a
= 2n> 2m- 2w .
by = —— i+ —j+ —k, 3
a a c

and ny,ny,n3 =0, +£1, +2, ... constructed with the translation vectors for the mean
lattice

a - X
a1=‘51+—J, a2=

! The authors wish to thank Dr R. Horyn, of the Institute of Low Temperature and Structure
Research, Polish Academy of Sciences, Wroclaw, for providing the lattice constants of the InsSn alloys
studied.
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the exponential terms e-#7s are unity. In the present case, the matrix element defined
by Eq. (1) becomes

(ktEfolly = f1<k+Tyjwy k) +1,Kk+ o, kD. @

The quantities f; and f, define, respectively, the concentration of indium and tin atoms
in the alloy

For g equal to the reciprocal lattice vector k,,, the matrix element given by Eq. (4)
is independent of the distribution of the various kinds of atoms in the lattice nodes.

In order to determine the value of the matrix element (Eq. (1)) for g different from k,,,
we transform Eq. (1) to the following form:

<k+q|a)lk> = 1/N2e'“’ Tk + giw k> +1/N Y e 'f(k+q|a)2 k. (%)
J(2)
Summation in the first term of Eq. (5) extends over all nodes of the mean lattice and the
structural factor occuring in this term

YN, e % = 5@, ©)
7
vanishes for g # I—é,,. Hence, Eq. (5) reduces to the form
k+Gloiky = Sx@) <k+Glw, — w41k ™

where S,(g), for completely random distribution of the component atoms in the nodes of
the alloy [9], fulfils the relation

isu(a? =122 ®

Comparison of the express1ons of Eqs (4), (7) and (8) shows that the pseudopotential
matrix element for ¢ equal to the reciprocal lattice vector k, possesses 2 value strongly in
excess of the absolute value of the matrix element for arbitrary g. The foregoing fact
justifies our approach to InsSn alloy, when calculating its band structure, as a crystal
having an ideal crystal lattice with one atom in the elementary cell and the pseudopotential
[2] calculated from Eq. (4).

3. The band structure of InzSn alloy

We calculated the band structure of In;Sn alloys of the concentrations given in Table 1
by applying the pseudopotential method [9-12] and having recourse to the pseudopoten-
tials given by Animalu and Heine [, 13]. For each of the alloys of Table I, we calculated
the Fermi energy in the free electron approximation using the well known relation [4]

h? |:3(3f1 +4f,) VB]Z/S
E | o gy
2m 8w

€)



268

TABLE 1
Fermi energy Er and a/c lattice constant ratio for InsSn alloys
Concentration 9% at. Sn ‘ Ef[Ry] l| alc
16.2 ‘ 0.6548 1.095
20 . 0.6592 1.107
25.03 0.6656 1.119
30 ‘ 0.6717 1.126
where Vy is the volume of the first Brillouin zone, equal to
@2n)°
Vg =4 ——, 10)
a‘c

and a, c are the lattice constants of the alloy. The Fermi energies Ey, calculated from
Egs (9) and (10) are given numerically in Table I. Applying the reciprocal lattice vectors
defined by Eq. (2), we also determined the first Brillouin zone of the alloys; its shape is

kz

Fig. 1. Brillouin zone for In;Sn alloy

shown in Fig. 1 and its dimensions for 25.03 9 alloy are given in Table II. In alloys with
a tin concentration upwards of 25.03 9 the Brillouin zone undergoes a slight elongation
in the direction of the k,—axis. For tin concentrations lower than 25.03%, it undergoes
a slight shortening in the same direction. For a quantitative illustration, see the a/c ratios
of Table I
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TABLE 11
Dimensions of Brillouin zone for InsSn alloy of concentration 25.03%; at. Sn

Symmetry point of Brillouin zone kx[A1] ky[A1] ko [At]

r 0 0 0

N 1.280 0 0

X 0 0 1.433

W 1.280 0 0.716

T 1.280 0.800 0

T 0.475 0 1.433

U 0.238 0.238 1.433

U 1.042 | 1.042 0

S 0.998 | 0.998 0

C 0.969 | 0.969 0

D g 0.998 ] 0.998 0.104

The determination of the band structure of the alloys reduces to solving the following
secular equation
det |[Ty(k, B)— E(0)]0u+ k+K[Wik+Td| = 0 (11)
where
72

- h - E)
Tk, E}) = T (k+ko)".

We calculated the nondiagonal matrix elements of the preceding equation by having
recourse to the relation [14]

et k| WIE+ED = [k +E o, k+E) +f2Kk+ T \k+Fr)
(Fi<EA+Fo s [T T+ folTe Ryl 03K+ ) (1 e+ Bl [T+ i)

-;;E ‘ _ koK ED)
hz - - - '
% —— [k —(ko+ku)’]
2m

(12)

Numerically, the matrix elements e+ o, k> and {e+TE,|w,]k) occurring in the
right hand term of Eq. (12) were calculated using the data tabulated by Animalu and
Heine [1] giving the matrix element values in the local pseudopotential approximation.

The vectors &, and k; in Eq. (12) take the following values for the successive rows
and columns of the determinant occuring in Eq. (11)

E1 e 0, %4 =S —31—32—33,
I_Ez = "'»1» ﬁs == —51—32, (13)
l-ég = —32, l;s = —32—33.
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In Eq. (12), summation of terms over indices m was performed for the reciprocal lattice
vectors

]_ém = mlgl +m252 +m3i;3
for values of m from the intervals
—E<m; <E, —E<my <E, —E < my <E, 14

where E is an integer. The foregoing summation does not comprise reciprocal lattice
vectors defined by Eq. (13). This ensures that the description of the band structure shall
take into account the contribution from pseudopotential matrix elements constructed
with reciprocal lattice vectors not contained in the set defined by Eq. (13) but occurring
in the interval of m-values of Eq. (14).

The vector ko of Eq. (12) has a constant value close to that of the wave vector l—;,
as functions of which the dispersion relations E(%) are calculated.

The secular equation was solved by Odra 1204 computer, calculating the dispersion
relations E(k) for InsSn alloys with 16.2, 20, 25. 03, and 30 % atomic concentration of tin.
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Fig. 2. Band structure of InsSn alloy in the symmetry directions I-W, W-T, T-U and U-X

In the directions T— U, U—X of the Brillouin zone shown in Fig. 1, we assumed for the
vector ko the coordinates of the point U and the value E = 3. For the directions I"— W,
W—T, N—W, our calculations were performed assuming for %, the coordinates of the
point W and E = 3. For the directions T— U, U~C, S—B and S— D, we assumed for ko
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the coordinates of the point U but E = 4. This procedure provides sufficiently good
information about the relation E(k) in the selected symmetry directions.

The dispersion relations thus derived are shown in Figs 2, 3 and 4. Flg 2 shows
solely the results for 25.03% tin concentration. The dispersion relations E(%) shown in
Fig. 2 provide a good illustration of the graphs describing the bands in the other In;Sn
alloys studied [8], i.e. in those containing 16.2, 20, and 309, atomic concentration of tin.
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Fig. 3. Third band in InsSn alloys close to the symmetry point S

The number of directions between symmetry points along which E(I-é) was determined
in this investigation is not complete. Only E(k) relationships between symmetry points
yielding essential information on the band shape and the principal elements of the Fermi
surface topography are considersd. The results shown in Figs 3 and 4 which, supplementing
the dispersional data of the ban<'s (Fig. 2), provide a basis for the formulation of conclus1ons
regarding the Fermi surface of the alloys, serve the same purpose.

In order to gain quantitative information concerning the spin-orbit interaction energy
and its influence on the position of the bands, we calculated it for band 4 in. the symmetry
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point W of the ]\3rillouin zone. The results of these calculations show [8] that the effect
of spin-orbit interactions is insignificant. Hence we draw the conclusion that spin-orbit
interactions fail to affect significantly the E(k) dispersion relations along the symmetry
directions of the Brillouin zone analyzed.
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Fig. 4. Dispersion relations for the second, third and fourth band close to the symmetry point W of the
Brillouin zone for In;Sn alloys

4. Conclusions

From the dispersion relations of Figs 2, 3 and 4 and the Fermi energy values Eg
calculated (Table I), the shape of the Fermi surface of the InsSn alloys considered can
be characterized qualitatively as follows: The first band 1 is completely occupied and
does not contribute to the Fermi surface of the alloy. The second band 2, which is partly
occupied, is responsible for the existence of a closed sphere of holes. This sphere is disposed
centrally in the Brillouin zone, and decreases in size with increasing tin concentration
of the alloy.

The Fermi sphere of electrons in the third band 3 consists of cigar-shaped surfaces
(Fig. 5). The size of the sphere increases with increasing tin concentration. The gap between
the bottom of the unoccupied part of the band situated in the point .S of the Brillouin zone
and the Fermi level Ey decreases slightly at higher tin concentrations. The effect is well
apparent in Fig. 3.

The fourth band 4 of the Brillouin zone is unoccupied, and does not contribute to
the Fermi surface. It lies closest to the Fermi level Eg in the symmetry point W of the
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Brillouin zone; the energy gap between its bottom and the Fermi level decreases with
increasing tin concentration, as shown in Fig. 4. Linear extrapolation of the gap between
the band and the Fermi level as a function of the tin concentration leads to the conclusion
that, at 329, tin content, In;Sn alloy should exhibit a zero energy gap between Ep and the
level of the fourth band in the point W of the Brillouin zone.

From the above considerations, the Fermi surface of In;Sn alloy is fouad to resemble,
in numerous topographical elements, the Fermi surface of indium. The data for indium

Fig. 5. Electron Fermi surface of the third band for In;Sn alloy

are to be found in Refs [2-4]. Both in pure indium and InsSn alloys, the first band is
completely occupied, the second band forms a closed sphere of holes, whereas the fourth
band is unoccupied. Pure indium, like the In;Sn alloys analyzed by us, has a tetragonal
crystal lattice.

The essential difference between the band structure of indium and In;Sn resides in
the Fermi surface, which forms the third band. In In;Sn, this pocket of the Fermi surface
(Fig. 5) consists of electron cigars disposed allong the symmetry directions T— W of the
Brillouin zone, whereas in the case of indium the cigars lie in directions 7—T [2].
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