Vol. A51 (1977) ACTA PHYSICA POLONICA No 2

FLUCTUATIONS OF MAGNETIC MOMENT AND THE SPECIFIC
HEAT OF A FERROMAGNET NEAR THE CRITICAL POINT

By B. MRryGoX

Institute of Physics of the Polish Academy of Sciences, Warsaw*
AND K. WENTOWSKA

Institute of Physics of the Warsaw Technical University**
( Received April 14, 1976)

The magnetic specific heat near the critical point has been calculated for an isotropic
cubic ferromagnet with 1/2 spins. The Helmholtz free energy has been calculated using the
constant coupling approximation taking into account the influence of fluctuations of the
magnetic moment. The actual inhomogeneous state of the magnetic system is idealized
by a model in which the system is divided into Ng equal cells each of which has a volume to
the mean volume of a fluctuation. Detailed calculations have been carried out only for
temperatures above 7.

1. Introduction

It is a well known fact that the theoretical temperature dependence of the magnetic
specific heat obtained on the grounds of the molecular field approximations does not
agree with the experimental data for ferromagnets above the critical point [1]. A tremendous
increase in the specific heat is observed when the temperature approaches the critical
point while the theoretical results are almost independent of temperature and take on
values which are much too small.

The behaviour of specific heat is well predicted by the scaling hypothesis except for
temperatures very near the critical point. For reduced temperatures ¢ of the order 10-*
and smaller the scaling law is not obeyed as far as the specific heat is concerned [2].

In theoretical considerations concerning specific heat, a ferromagnet is usually trea-
ted as a homogeneous system as far as its magnetization is concerned. On the other hand

* Address: Instytut Fizyki PAN, Lotnikéw 32/46, 02-668 Warszawa, Poland.
** Address: Instytut Fizyki, Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, Poland.

(207)



208

it is known that fluctuations in magnetic moment are responsible for the phenomenon of
critical scattering of neutrons near 7.

We shall show in the following sections of this paper that consideration of fluctu-
ations in magnetic moment leads to temperature dependence of the specific heat which
remains in good agreement with the experimental data for temperatures 7> T..

2. Fluctuation model of a ferromagnet near the phase transition

Let us consider a ferromagnetic system of N spins in a paramagnetic phase near the
critical temperature. The system in question is inhomogeneous due to fluctuations in the
magnetic moment. We replace the actual inhomogeneous state of the system by an ide-
alized model of inhomogeneity in which the system is divided into N; equal cells in which
the magnetic moment differs from the mean one by mean spatial distribution of magnetic
moment in a fluctuation. Such a cell following Smoluchowski [3] is treated as a subsystem
in a reservoir. The subsystem is very small from a macroscopic point of viev but suffi-
ciently large to apply statistical mechanics to describe the properties of it. The subsystem
remains in a nonequilibrium state with respect to the reservoir but we can assume a local
equilibrium. In other words, it is generally postulated that all thermodynamic functions
of state exist for each cell (subsystem) of the system. The thermodynamic quantities are
‘the same functions of the local state variables as the corresponding equilibrium thermo-
dynamic quantities [3, 4].

This physical model of the system near the critical point has been used to derive the
equation of state for a fluid system [S]. A similar model has been utilised by Rice [6]
in calculating the specific heat of a fluid system.

In such a model the free energy of the system can be expressed by a sum over the free
energies of the subsystems. Thus the total change in free energy AF of the system due to
fluctuations will be equal to the product of the number of fluctuations N; and the mean
value of free energy AF, of a subsystem

AF = N {AF>. 1)

Equation (1) formally holds for an arbitrary value of N; connected with the division of
the system into subsystems. In the model under discussion only one value of N; has physical
meaning. This value is connected with the most probable number of spins N; in the sub-
system an can be determined from the condition for a maximum of the probability p of
‘occurrence of a fluctuation

—— = 0. @

The probability distribution function for a subsystem can be expressed by the work
necessary to create the fluctuation with a spatial distribution of magnetic moment {M,,
My, ..., My,}. This work is equal to the change of the proper thermodynamic potential
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[7]. Thus the probability distribution function takes the form [8, 10]
p(My, My, ..., My )dMdM, ... dMy,
= const exp [ —A4F (M1, M,, ..., My )/kT]dM dM, ... dMy,. 3

In order to calculate AF, an arbitrary phenomenological or microscopic model of a ferro-
magnet can be applied.

3. Magnetic free energy of a subsystem

To calculate the free energy of the subsystem we assume the Heisenberg model of
an isotropic cubic ferromagnet with 1/2 spins. The thermodynamic properties of the
subsystem of N, spins have been derived by utilizing the constant coupling approximation
[01 in which a system can be described by the properties of a representative pair of spins.
The spatial distribution of the magnetic moment of a fluctuation treated as a subsystem
has been taken into account by introducing an inhomogeneous molecular field into the
effective Hamiltonian for a pair of spins [10]. In this approximation the free energy AF;
can be expressed as follows

Ny z
AF; =% Y 3 AFggiw 4)
E=1 «=1

where AFg 1, s related to a pair of spins at R, R+ lattice sites and z denotes the number
of nearest neighbours. It is convenient to replace the summation over R by integration
over the volume of a fluctuation. Thus

1
AF, = — J d*rAF[b(r)], (5
’ 2v
Vi

where b(r) denotes the spatial distribution of the molecular field in a fluctvation and v
is the volume per unit atom in a crystal lattice. The free energy AF [b(r)] of a cluster of
z+1 spins with central spin at » has been obtained by expanding AF ., into a Taylor
series with respect to the values of molecular field at R and R + o in the following form

[11, 12]
AF[b(r] = B, [b(r)1?+B,[V*b(#)] b(r)
+ B3 [Vo(r)1? + B,[b(r)P? [VH(r)} + Bs[b(r)]* + Bs[b(r)]? V2b(r). ©)
The coefficients B obtained in the constant coupling approximation have the form
By = ;1 zy'uy, By = §BTaPY?u,, By = g [T (urtus),

B, = 35 B la®y*(us+6us), Bs = 1 p'zy*us, Bs = § @y us, @)
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where
U = —(z=4)z, us = QBN C+r?) A=n?), us = u3[8(z—1)/z-3CB+r)],
us = 7B+ (" =3)+3(7—n*) (z— D)z, ®
4up : . . -
¥ = el n=exp(—pJ). fp=1/kT, and where u denotes the Bohr magneton

and where p denotes the Bohr magneton, J — exchange constant, a — lattice constant.

The distribution of the molecular field b(r) can be determined by means of the varia-
tional principle. The method has been formulated in [10]. Application of this method to
the problem in question leads to the differential equation for the distribution of the magnetic
moment in the following form [12]

AM —K2M — K ;M? —KsM(VM)* = 0 )
with

Ky = (ua) "%z —2 Ks=p"*3
3_(”‘(1 Z 1 5 = [ s
Uz—U;y Uz—Uy Uz—Uy

K% = 2za™? buts — us

(10

In writing equation (9), the following relation [12] between magnetic moment and molecular
field has been used
N
M(r) = —— b(r).
(r) 31 (r)
Equation (9) has been obtained by neglecting all terms higher than the fourth order in the
expansion (6). When equation (9) is derived neglecting terms higher than the second
order in the thermodynamic potential, one obtains a solution for the distribution of magnetic
moment with spherical symmetry as follows

exp (—K,r)

M(r) = const 11)

One of the possible approximate solutions of the nonlinear equation (9) with spherical
symmetry has the form [13]

M(r) = ud exp (—Kr) (12)

where

K2 = K%"'% K3(/J£)2_

— A 13
3[1—3 Ks(ud)’] (13)

and A4 denotes the mean value of the magnetic moment (in Bohr magnetons) at the origin
and can take values from O to 1.



211

Substituting relation (6) into expression (5), then using the distributions of magnetic
moment (11) or (12) and integrating over r we obtain correspondingly in the linear approxi-
mation of equation (9),

n
AFP = v (08)™ V2 a (uA)*(us +us) [Kia+v™1] (14)
and in the nonlinear approximation
AFP = = (0f) " @A (Ka) ™ {(us—u5) [1+(K 10)*(Ka) ]

+35 (nA)*(ugy+2us[2(aK) > = 3]}, i (15)

where (vd) is the distance between the nearest neighbour spins. In order to obtain formulae
(14) and (15) the integral in (5) has been calculated in the limit ¥, — oo on the assump-
tion that these integrals converge rapidly because of the form of the solutions (11) and
(12). The last assumption is not correct for the linear approximation for temperatures
near T,. This point will be discussed in Section 6.

4. Mean number of fluctuations

It results from our physical model that the mean number of fluctuations N is equal to
the ratio of all spins N to the mean number of spins N, in the fluctuation. Thus to calculate
the mean number of fluctuations we use the general condition (2). To simplify the calcula-
tions we consider the problem in the approximation of homogeneous fluctuations. In this
approximation the change of free energy due to the existence of a fluctuation has the
form

AF (M) = 3 N\ [W(T)M? + W(T)M*], (16)

where
W(T) = (4’B)y ‘zu,,  W(T) = (164°B) " zus.

In order to apply formula (2) one should know the analitical form of the normalization
constant

(const) ™! = +§m exp [~ AF (M)/kT}dM. a7n

When calculations are carried out neglecting terms higher than the second order in the
thermodynamic potential (16), the probability distribution function has the form

N, WEN2 1
P = ( Z;kT > exp [— T NlW(Z)MZ:I (18)
and
kT
NO(T) = (19)

M>W(T)
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In this approximation the mean number of fluctuations is expressed in the form
N = N(kT)™ '(uA)*WwX(T). (20)

Integral (17) cannot be expressed in a form convenient for further calculation when the
thermodynamic potential is given in the form (16). Therefore in the nonlinear approxi-
mation, we try to find an approximate value of N;. To do this, we replace 1N, W9 M+

by IN,W®M2M2. Thus

+ oo
1
(const) ™! = f exp{— — N, [WPM*+ W("')M4]} dM

2kT
+ 0
1 N
- | exp{— — N,[WPM*+ W(“’MZMZJ} dM.
2kT
* Nf/N
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Fig. 1. Temperature dependence of the mean number of fluctuations per spin. The upper curve represents
the nonlinear approximation (formula (22)). The lower curve is obtained on the basis of formula (20)
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To estimate the value of M? we consider that W (T —» T,) — 0. At the critical point
we have

Oy = 2 kT )
T I*GWEITIN(T)
Eventually, we obtain the following expression for Ny in the nonlinear approximation
N ~ N(ET) ™ (uA) [W(T)+2W S(T)u A*]. 22(

The temperature dependence of N{¥and N{”) for the amplitude 4 = 0.4 is plotted
in Fig. 1.

5. Discussion
In order to calculate the specific heat one should apply the thermodynamic relation

2

0
AC = —T — (4F
572 (4F)

where AF is given by formula (1). Substituting equations (14) and (20) or equations (15)
and (22) we obtain expressions for the specific heat in the linear and nonlinear approXi-
mation. The numerical calculations have been performed in both approximations. In the
linear approximation of the differential equation (9) the specific heat obeys the scaling
law. When higher order terms in the thermodynamic potential are taken into account,
the specific heat has a finite value at T, and is a linear function of In ¢ when not too near
T,. The specific heat calculated from a nonlinear approximation for two values of the
amplitude 4 is plotted as a function of temperature in Fig. 2.

Our aim was to show that fluctuations should be taken into account in calculations
of the specific heat near the critical point. The results obtained for a ferromagnet above
the Curie temperature confirm the important role of fluctuations in the critical region as
far as the physical properties of a system are concerned. The significance of fluctuations
is evident even if calculations are carried out in a rough approximation.

In order to examine the infiuence of fluctuations on the specific heat several simplify-
ing mathematical and physical assumptions have been made. The division of a system
into N; cells equal to the mean volume of a fluctuation is an idealization of a real system.
However, it does not seem possible to describe a real inhomogeneous system due to the
fluctuations in any other way.

To calculate the mean number of fluctuations we assumed a homogeneous space
distribution of magnetic moment in a fluctuation. The calculations of N; are, at least in
principle, possible in the model of inhomogeneous fluctuations. However, it would involve
real mathematical difficulties. In general, when an inhomogeneous fluctuation is replaced
by a homogeneous fluctuation their amplitudes need not be the same. The numerical calcu-
lations have been performed for several values of the amplitude 4 treated as a parameter
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of the theory independent on temperature. In these calculations we took the same value
of the amplitude in the expression for free energy of inhomogeneous fluctuation and for
determination of the mean number of fluctuations in homogeneous fluctuation model.
Such an assumption can change the final results quantitatively but does not influence the
temperature dependence of the specific heat.
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Fig. 2. Magnetic specific heat as the function of In e. The upper curves represent the increment of the specific
heat due to fluctuations calculated by a nonlinear approximation. The specific heat for a homogeneous
system obtained by means of constant coupling approximation is given by the dashed line

In calculating the free energy of a fluctuation, the summation over N, spins (Eq. (4))
was replaced by the integral over the volume of the fluctuation (Eq. (5)). This integral has
been calculated in the limits (0, c0). Such an approximation is justified only if the integral
converges rapidly. The last approximation is the reason why the linear approximation
cannot be extrapolated to the immediate vicinity of the critical point. The upper limit + oo
of the integral in Eq. (5) should be replaced by the radius of a fluctuation.

Another approximation is associated with the calculation of the normalization con-
stant (Eq. (17)) necessary to determine the mean number of fluctuations. From the physical
point of view, the set of possible values M is limited by +guS. Again, integration of the
probability distribution function between the limits + oo is justified except when near T,
when the probability distribution function is not very sharp and does not converge rapidly.
The choice of + 0o as the limits in Eq. (17) leads to an error in determining the mean number
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of fluctuations, but because of the temperature independence of these limits, this does not
influence the temperature dependence of the specific heat.

Fitting the numerical results with \experime.ntal data for specific heat is possible by
proper ¢hoice of the value of the parameter 4 which has a sense of the amplitude of a fluctu-
ation at its center. However, because of the approximations discussed above the value of
A corresponding to the best fit cannot be treated as a real value of the amplitude.
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