FORCE FIELD STUDY OF SOME XY2 TYPE MOLECULES BY K. RAMASWAMY AND R. SRINIVASAN Department of Physics, Annamalai University, Annamalainagar* (Received December 9, 1975; final version received May 4, 1976) The most probable force fields of some of the XY_2 type molecules like SO_2 , NO_2 , SiF_2 and CF_2 have been fixed using the method of Redington and using the observed molecular parameters such as the Coriolis coupling constant, mean amplitudes of vibration, rotation distortion constants and isotopic shifts. ### 1. Introduction It is well known that the unambiguous determination of force fields is possible only with the help of some additional data such as the Coriolis coupling constants [1], mean amplitudes of vibration [2], rotation distortion constants [3], and isotopic shifts [4]. Attempts have been made to obtain mathematically feasible and physically meaningful set of torce constants using several methods [1-6]. A critical survey of all these methods in uniquely fixing the force field was made earlier for sulfur trioxide [2]. The present paper is an extension of the above method to fix the unique force fields of some of the XY_2 bent type molecules namely SO_2 , NO_2 , SiF_2 and CF_2 . ## 2. Spectral data The necessary vibrational frequencies and molecular parameters used in the present calculations are summarised in Table I along with the references [7–19] from which they are taken. The symmetry coordinates used here are essentially the same as those reported by Cleveland and Meister [20]. ^{*} Address: Department of Physics, Annamalai University, Annamalainagar 608101 Tamilnadu, S. India. The observed vibrational frequencies (cm⁻¹), bond parameters, Coriolis coupling constants, rotation distortion constants (MHz) and mean amplitudes of vibration (Å) of some XY₂ type molecules | Molecule | Vibrational frequencies | | | Bond parameters | | Coriolis coupling constant | Rotation distortion contants
in MHz. | | | |---|-------------------------|--------------|----------------------------------|-----------------|------------------|----------------------------|---|--------------|--------------| | | $v_1(A_1)$ | $v_2(A_1)$ | ν ₃ (B ₂) | R_{x-y} | XŶX | ζ13 | $ au_{XXXX}$ | $ au_{YYYY}$ | $ au_{XXYY}$ | | ³² S ¹⁶ O ₂ | 1156 [7] | 522 | 1366 | 1.435 [11] | 119° 2 1′ | 0.3066 [14] | -9.9216 [17] | -0.0399 | 0.4314 | | ³⁴ S ¹⁶ O ₂ | 1147 [7]
1357.8 [8] | 518
756.8 | 1349
1665.5 | 1.197 [12] | 134°15′ | <u></u> | -299.4 [18] | -0.0414 | 1.8430 | | ¹⁵ N ¹⁶ O ₂
²⁸ Si ¹⁹ F ₂ | 1342.5 [8]
843 [9] | 747.1
343 | 1628
855 | 1.5946 [11] | 100°53′ | 0.4285 [15] | -1.9807 [19] | -0.0715 | 0.2613 | | $^{12}C ^{19}F_2$ $^{13}C ^{19}F_2$ | 1222 [10]
1191 [10] | 668
668 | 1102
1073 | 1.3035 [13] | 104°47′ | | -11.2778 [13] | -0.0691 | | Note: The electron diffraction values of mean amplitudes of vibration of both bonded and nonbonded atoms are $\sigma_{x-y} = 0.041$ and $\sigma_{y...y} = 0.053$, Ref. [16]. ### 3. Results and discussion The Redington method [5] was successfully applied to the SO₂, NO₂ and SiF₂. "F_{stp}" solutions of 47°15′, 53°15′ and 27°45′ were obtained by this method. But for CF₂, Redington's method could not yield reliable force field. The observed Coriolis coupling constants of SO₂ and SiF₂ were used as additional data and angles of 48°30′ and 28°30′ were determined which reproduced the experimentally observed molecular constants. Electron diffraction values of the mean amplitudes of vibration were available only for the SO_2 molecule. The use of mean amplitude of vibration of non bonded atoms yields a rather low value for ϕ , and as a result does not reproduce any of the molecular constants. The mean amplitude of vibration of bonded atoms gives only an imaginary solution. The rotation distortion constants like τ_{XXXX} , τ_{YYYY} and τ_{XXYY} give comparable force fields for NO₂ and SiF₂. In the case of SO₂ the τ_{XXXX} and τ_{YYYY} parameters alone yielded ϕ values which coincide well with the values determined by other methods. But the τ_{XXYY} experimental value is higher than those calculated for various angle parameters varying from 0° to 180° and hence it could not be used to fix the force field. For CF₂, the τ_{XXXX} and τ_{YYYY} parameters yielded a very reliable set of force constants and other molecular constants. The isotopic shifts used for the NO₂ and CF₂ furnished force fields comparable with the force fields obtained through the other methods. But for SO₂ since the angle obtained was very low, the molecular constants determined for this parameter were considerably lower than the others. The various ϕ values obtained through different methods are given in Table II. The ϕ values obtained through different methods | Method | Parameter ϕ | | | | | | |-----------------------|------------------|-----------------|------------------|-----------------|--|--| | Weinod | SO ₂ | NO ₂ | SiF ₂ | CF ₂ | | | | Redington | 47°15′ | 53°15′ | 27°45′ | 15°46′ | | | | Using 5 | 48°30′ | | 28°30′ | | | | | Using σ_{YY} | 42°10′ | | | | | | | Using τ_{XXXX} | 51° | 53° | 29° | 27°32′ | | | | Using $ au_{YYYY}$ | 47°15′ | 53°15′ | 29°30′ | 25°51′ | | | | Using $ au_{XXYY}$ | _ | 53°36′ | 27°45′ | | | | | Using isotopic shifts | 43°41′ | 51°16′ | _ | 25°15′ | | | Most probable ϕ : The most probable ϕ can be stated as the average of all the ϕ 's obtained by different approaches which reproduce all molecular constants within reasonable accuracy. The various molecular constants obtained for the most probable ϕ of SO_2 , NO_2 , SiF_2 and CF_2 are given in Table III. TABLE III Force constants (mdyn/Å), Coriolis coupling constants, mean amplitudes of vibration (Å) and rotation distortion constants (MHz) obtained for the most probable ϕ of some XY_2 type molecules | Molecular | Molecule | | | | | | | | |---------------------------------|--|--|--|--|--|--|--|--| | constants | SO ₂ | NO ₂ | SiF_2 | NF ₂ | | | | | | Most probable ∮ | 47°40′ | 52°53′ | 28°30' | 26°13′ | | | | | | F_{11} | 10.0793 ^a (10.03) [21] (10.05) [22] | 13.1265
(12.963) [8]
(13 185) [18] | 5.1636
(5.329) [15]
(5.34) [25] | 7.656
(7.756) [13]
(7.450) [26] | | | | | | F ₂₂ | 0.8086
(0.7933) [21]
(0.7930) [22] | 1.1181
(1.125) [8]
(1.109) [18] | 0.4356
(0.44) [15]
(0.439) [25] | 1.383
(1.373) [13]
(1.400) [26] | | | | | | F ₁₂ | 0.2513
(0.267) [21]
(0.280) [22] | 0.6281
(0.055) [8]
(0.0679) [18] | 0.1634
(0.174) [15]
(0.195) [25] | 0.7413
(0.7713) [13]
(0.6800) [26] | | | | | | ζ ₁₃ | 0.3224 | 0.4755 | 0.4285 | 0.7182 | | | | | | σ_{X-Y} | 0.0351 | 0.0381 | 0.0426 | 0.0450 | | | | | | $\sigma_{\mathbf{Y}\mathbf{Y}}$ | 0.0507 | 0.0431 | 0.0745 | 0.0505 | | | | | | $ au_{XXXX}$ | -9.3029 | -299.035 | -1.9492 | -10.9343 | | | | | | $ au_{YYYY}$ | -0.0393 | -0.0417 | -0.0729 | -0.0689 | | | | | | $ au_{XXYY}$ | 0.3979 | 1.8488 | 0.2637 | _ * | | | | | ^a This number of significant figures is retained to secure internal consistency in the calculations. $mdyn/Å = 10^2 N/m$. The values in parenthesis are taken from their respective references. For the SO₂ molecule, as in Redington's method, we observed the Coriolis coupling constant and τ_{XXXX} and τ_{YYYY} parameters furnished comparable force fields. An average value of the three was taken as the most probable ϕ . The force constants calculated for the most probable ϕ of 47°40′ compare extremely well with those reported by Kivelson [21], Polo and Wilson [22] and Morino et al. [14]. The mean amplitudes of vibration of both bonded and non-bonded atoms determined for the most probable ϕ coincide well with those spectroscopically calculated by Clark and Beagley [16], even though their experimental values are higher than these values. But the most probable ϕ could not reproduce the Coriolis coupling constant accurately. This may probably be due to the fact that ξ is a highly sensitive parameter in fixing the force fields. The rotational distortion constants are in good agreement with the reported values. For the NO₂, the most probable ϕ was determined as the average of the angle parameters obtained through Redington's method, using observed rotation distortion constants and isotopic shifts. The force field furnished by this angle of 52°53′ can be assumed to be unique as it reproduces the diagonal force constants reported by Arkawa et al. [8], Bird et al. [18], the observed rotation distortion constants and Coriolis coupling constants calculated by Cyvin [23], namely $\xi_{13}^2 = 0.249$ and Oka and Morino [24] namely $\xi_{13}^2 = 0.241$. The off diagonal force constants differ considerably from the reported values. In the case of SiF₂, the force constants reported by Khanna et al. [15] and Shoji and others [25] were accurately reproduced by the most probable force field in addition to the observed Coriolis coupling constants and rotation distortion constants. The Redington method could not yield a reliable force field for the CF₂ molecule. The experimental isotopic shifts and rotation distortion parameters were utilized in uniquely fixing the force field. This most probable force field yields a good set of force constants in agreement with the values of Milligan et al. [26] and Kirchoff et al. [13]. One of the authors (R. S.) is grateful to the Council of Scientific and Industrial Research, Government of India, New Delhi, for financial assistance in the form of a Junior Research Fellowship. #### REFERENCES - [1] T. R. Ananthakrishnan, G. Aruldhas, J. Mol. Struct. 13, 1636 (1972). - [2] K. Ramaswamy, R. Srinivasan, Acta Phys. Pol. A49, 763 (1976). - [3] L. H. Jones, R. R. Rayan, L. B. Asprey, J. Chem. Phys. 49, 581 (1968). - [4] B. Jordonov, B. Nickolova, J. Mol. Struct. 13, 21 (1972); 15, 7 (1973); 15, 19 (1973). - [5] R. L. Redington, A. L. Khidir Aljibury, J. Mol. Spectrosc. 37, 494 (1971). - [6] E. B. Wilson Jr., J. C. Decius, P. C. Cross, Molecular Vibrations, McGraw Hill, New York 1955. - [7] M. Allawena, R. Rysnik, D. White, V. Calder, D. E. Mann, J. Chem. Phys. 50, 3399 (1969). - [8] E. T. Arkawa, A. H. Nielson, J. Mol. Spectrosc. 2, 413 (1958). - [9] D. E. Milligan, M. E. Jacox, J. Chem. Phys. 49, 4269 (1968). - [10] D. E. Milligan, D. E. Mann, M. E. Jacox, R. A. Mitch, J. Chem. Phys. 41, 1199 (1964). - [11] W. H. Kirchoff, J. Mol. Spectrosc. 41, 333 (1972). - [12] G. R. Bird, R. Kato, J. Rolfe, J. Chem. Phys. 25, 1040 (1968); 47, 1901 (1967). - [13] W. H. Kirchoff, D. R. Lide Jr., F. X. Powell, J. Mol. Spectrosc. 47, 491 (1973). - [14] Y. Morino, Y. Kikuchi, S. Saito, E. Hirota, J. Mol. Spectrosc. 13, 95 (1964). - [15] V. M. Khanna, R. Hauge, R. F. Curl Jr., J. L. Margrave, J. Chem. Phys. 47, 5031 (1967). - [16] A. H. Clark, B. Beagley, Trans. Faraday Soc. 67, part 8 (1971). - [17] H. A. Gebbie, W. B. Stone, E. K. Gora, S. A. Clough, F. X. Kneizys, J. Mol. Spectrosc. 19, 7 (1966). - [18] G. R. Bird, J. C. Baird, A. W. Jache, J. A. Hodgeson, R. F. Curl Jr., A. C. Kunkee, J. W. Bransford, J-Anderson Rastrup, J. Rosenthal, J. Chem. Phys. 40, 3378 (1966). - [19] V. M. Rao, R. R. Curl Jr., J. Chem. Phys. 45, 2032 (1966). - [20] A. G. Meister, F. F. Cleveland, Am. J. Phys. 41, 13 (1946). - [21] D. Kivelson, J. Chem. Phys. 22, 904 (1954). - [22] S. R. Polo, M. K. Wilson, J. Chem. Phys. 22, 900 (1954). - [23] S. J. Cyvin, J. Mol. Spectrosc. 11, 195 (1963). - [24] T. Oka, Y. Morino, J. Mol. Spectrosc. 8. 9 (1962). - [25] H. Shoji, T. Tawaka, E. Hirota, J. Mol. Spectrosc. 47, 268 (1973). - [26] D. E. Milligan, M. E. Jacox, J. Chem. Phys. 48, 2265 (1968).