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Spin diagram technique of Izyumov and Kassan-Ogly is applied to the Heisenberg
ferromagnet with amsotropy of the type -KZI(S})2 Complementary rulés for diagrams are

given. When using th1s techmque the well known results of Lines, Noskova, Devlin, Potapkov
and correspondence between decoupling scheme for the Green functions and some classes
of diagrams are obtained.

1. Introduction

In papers [la, b] Izyumov and Kassan-Ogly have formulated very convenient spin
dlagram technique for the Heisenberg ferromagnet. This diagram technique was based on
‘the analogy of the Wick’s theorem for the spin operators [2], [la, b]. The spin diagram
technique has been used for considerations of antiferromagnet in [lal, ferromagnet in
[1b] and s—d model in [lc].

In our paper we have to do with the spin system described by the Hamiltonian

= _hZf:S; 3 Z J1f(S7Sq +87S )—K;(S?)Z, €Y

where the first term is Zeeman’s energy, the second-exchanceg interaction and the third
is single ion anisotropy. Everything we know about thermodynamical properties of such
systems may be found in papers [3]-[7]. These authors worked in the frame work of the
theory of the equations of motion for the double-time Green functions. All the authors
[4]-[7] have taken into consideration the single ion anisotropy term exactly applying
only the usual Tyablikov decoupling procedure to the Green functions containing the spin
operators with different lattice sites. Lines [3] has applied a special kind of the decoupling
scheme to the Green functions constructed with the spin operators from single ion aniso-
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tropy. For the other Green functions he has used Tyablikov decoupling procedure. His
decoupling method does not take into account the crystal field anisotropy strictly. Let us
“discuss this. The use of the spin diagram technique allows us to obtain all results of Refs
[31-[6] It shows equivalence between the decoupling procedure used in [3}-[6] and the
summation of certan classes of graphs. '

In §2 we recall very briefly the essence of the spin diagram technique of Izyumov
and Kassan-Ogly. '

In § 3 we supplement the diagram technique due to our case.

In § 4 we perform the summation of certain classes of graphs to obtain the results of
[4}-[6]

In §5 we sum the graphs to have the result of [3].

2. Spin diagram technique

The starting point of the spin diagram technique is the formulation of the Wick’s
theorem for the spin operators [2], [la, b]. According to this theorem every statistical
average of “time’?"ordered spin operators can be expressed by the sum of the statistical
averages of n—1 “time” ordered products each of them multiplied by the Green function
of the type

Go(z—1")

N _(TS"(T)S+('C')>0 _ ) {nﬂ > 17 @

20, e+l t<7

where 6y = {(S%)¢ is the magnetization and Hp = (e’ ~1)"1. This procedure may be repeat-
ed for every térm with n — 1 operators and so on. In the end every statistical average
of n “time” ordered spin operators becomes a sum of terms each at them being a product
of some number of the Green functions (2) and a statistical average of a number of the
-operators S*, Each such term can be represented graphically. Any graph is made up of the
following parts: wavy lines, directed lines, single points and-ovals. Exchange integral J,,
we denote as a wavy line, Green function (2) as directed line 7 > 7', Directed lines
and isolated points form bloks. When bloks have the same 1attic¢ site index we put them .in
a—1 N
oval. Each oval gives the contribution ¢% % = : 0'01 , where o is a number of differ-

= 1B

ent parts in an oval, The whole contribution from an n-order graph can be expressed in
the form [la, b]

_ B ] B
P .
(-1)"2’”5}" Ia%“s_l]fdrl fdtz... J‘drn E E g roard pagaise
s 0 0 0 fi#91 f2%g2  fn#on
Jf,.g,.Go(-.--) v Go(L2)0( ) L 6(. ). 3)

F is the number of poinis at which one or two directed lines come together and one directed
line goes out, m is the number of points from which the directed line go out, P, is the
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number of topologically equivalent graphs, a—the number of different parts in an S-oval.

This can be seen in more detail in [la, b}
This diagram technique is much simpler and more convenient than that-of Stinch-

combe et al. [8].

3. Spin diagram technique for Heisenberg ferromagnet with crystal field anisotropy
In contrast to § 1 owing to the existence of the additional term —K )" (S7)? in (1), the
f

diagram technique [la, b] should be supplemented. To do it consider for example the
average .

w T p i
et ~1y -
(TS, (DS, (7)) = (TJ‘dTI e de!<TV(Tl) V(Tz)Sm(T)S,T oes 4
1=0 ) 0 0
‘where
V() = opeT | (5)
Ho= —h ; S%, 6)
and
V=~ 3 T (878 +58)-K Y (597 [0
f#g £
Tr (e777°) : .
{oodp = ;ﬁ:’_ i, and <...>,. denotes the connected average. To represent the right-hand

side of (4) graphically we design K) (S7)? as O----O. Linked cluster expansion contains
o r

the graphs related to exchange interaction, single ion anisotropy and both. The graphs
of the first type are well known [la, b] and theorefore are not considered here. Because
the third kind graphs may be constructed be means of previous types we restrict ourselves
to the investigation of the second kind only. It should be noticed that if there is to be no
exchange interaction we have graphs of the second kind solely. In the first ordér of Eq. (4)
we have the term

8 .
K fZ b[ At {T(SF,(11))* S (DS, (7))o ®)

Drawing all possible. contractions of all operators (graphical representation of the
Wick’s theorem [2], [la, b]) in (8), we get

IS0 T\ s S

]
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It is easy to see that
O )
z | = 28K0m I<SH(E 3G (T-T), o
7

where :
{Sh(S7)"Y0e = By (06 +20400), (11)
and 6, = 0y, for every lattice site index m.

Taking into account (10) and (11) we can express (10) in terms of connected diagrams

as follows
iz='+4— (12)

where

} g = 28K8m 61 Go(T-T") (13

L% - {m =2BK8mn 656, Co(T-T), (14)

From (13) we see that K(S5)? = O----O should be treated as 2 different blocks. Therefore
the oval (13) contains now three blocks and according to [la, b]we have ¢y . In all further
considerations we will assume that O----O means two different blocks. We used in (14)
double ovals. The external oval shows that all operators in it have the some lattice site
index. Proceeding analogically as in (10) and (11) with the other contractions in (9) we have

?(Z = » ? - 7£J—1— J (15)

where

P e
j;g =~2K58ms ammﬁo f dTGo(T-T) Go(T-T) (18

and
% _—_-2Kf§<3mf,af,n5§ [T T)6,(5-T) 19

For the last two terms of (9) we get

= 2K 385 o +0) [ ATGT-T)GT )8
1 0 X

;nd:j}:
><9:

Kl

= 2K 585 0oGo-0) | T Gl LG 1)1
1 0
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“‘We make an arrangement in all further cases that if the directed line is going down or up
then it gives the contribution Go(-+0) or Go(—0) respectively.

In the second and higher orders of (4) there are more and more graphs. All these
graphs can be obtained in very much the same way as (9). In addition to the rules of [la, b]
we have to introduce the following rules. Namely O---O should be treated as two blocks
and the operators S7(7) in” O----O may be connected in two ways by the directed line.
When a directed line is going up then contributes to ‘Go(—0) and when the line is going
down it gives Go(-0). Moreover several ovals should be surrounded by the external
oval when the lattice index is the same.

4. Results of Refs [41-[6]
We take into cOnsideratipns two  functions:
Apey —7") = (TS, () SF(z')y and B,,_,(t1=7") = {TS%(x) S;(x) S} (z)).

First we compute the function Am,,('c 7'). For thls purpose we deﬁne the Fourier space and
“time” transformation :

~

%

Ayt~ r) = — —Z Z MM~ Ipt =) 4 (), (20)

where
B
Aw,) =33 e [ drer°A,(q). (21
m -B

The same can be made with the function B,,_,(t—1'). The perturbation series for A(w,)

in terms of diagrams is given in Appendix Ia. First we sum the diagrams from Appendix Ia
n

g1v1ng the contribution in n-th order proportional to —

4 :
= wh p— .
(o, +h +1» Where Jy Eg Jtq

The sum of these graphs (Appendix Ib) is

20 oJo \* 2 :
° g(-—)(. )= > 2
zco +h iw,+h iw,+h+0,J,

Consider now the graphs from Appendix Ia giving thcgcontributioh in n-th order
" .

k
proportional to ——— (oY’ +1 (Appendix Ic).

=200y Jo NVE Vi gy
) T iw,+h  iw,+h io,+h) -h+
n=1 .

@0

We obtain

[ K r zao(iw +h)_2/10K
+ : g L+(=D") = i i)
iw,+h (iwp+h) (=17 = (iw,+h)*—K? )
1

n=
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Let us now collect from Appendix la the graphs with the contribution in n-th order propor-

. Y :
tional to (zT—I—h G2 (Appendix Id).
p
We get
_;__ _ 20, < A 204
‘ _'iwp+h io,+h B iw,+h—0J, ’
n=0
where
=Y. e ™ =, 24

We renormalize the series (23) with help of (22) replacing each directed line ——>—
in (23) by ——>—— from (22).

We obtain
1 zao(iwp‘i‘h‘{“o'o.]o)—"zloK
ﬁf =- —— . 25
/ (iw,+h+0ooJg)—K? (29)
We replace now each directed line ————in (24) by __:»_ —— from (25). If one renor-

malizes additionally the ovals in (22), (23) and (24) one obtains instead of o, and A,
full ¢ and A. Therefore we can write

20(iw,+h+0J,)—2AK

= — ' 26
(iw,+h)* +0(2J o= J3) (iw,+ h)+6°T 5 — 0> J o+ AKT — K* (26)

Now we shall be interested in the function B,,_,(t—7'). For the Fourier transform of
this function we have the linked cluster expansion in’ Appendix Ila. The partial summation
of diagrams from Append#x Ila needed for getting suitable results may be obtained in the

. : J3
following way. We first sum the.diagrams with contribution proportional to W
iw, ;
in n-th order (Appendix IIb). This sum is

by = — 0=% @7
o, +htoe, ‘

n

Next we sum the diagrams contributing in n-th order proportional to

(Appendix Ilc). We get
},0‘_‘0-0»

——— 28
iw,+h—K 28)

(Ilc) =
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After renormalizing the graphs in (27) by means of (28) we obtain the result

[. l i l? J i W_ l EE;%OEQ;OJO-K e

Consider now the following series

- 1
1 + é + (= + (g’ O . 7_ 6’0 jk@ .
A

We can renormalize the series (30) replacing the directed line ———— by —»——

form-(25). |
Finally we sum the series

(==l TEPICPIR

\

(31)
After renormalizing the ovals in (31) we obtain full ¢ and A instead of o, and Ao. Therefore
the expression for By(w,) obtained from (31) is
(A—0) (iw,+h+0Jo+K)
(iw,+h)* +0(2To—J}) (iw,+ h)+6°J§ — 0*J oJ, + AKT — K
By means of (26) and (32) we obtain two equations for ¢ and A. These equations are the

same as those obtained in Refs [4]-[6] and therefore we can say that the way of summa-
tion to get (26) and (32) is simply equivalent to the decoupling scheme used in [4]-[6].

Byw,) = (32)

5. Decoupiing prbcedure of Lines

Lines [3], applying a special decoupling procedure has found

Aoy =T ()

A
i, +h+o(Jo—J)+ - K
o
where 4 =3 {(§%)*) —S(S+1). g
To obtain the result (33) for §' = 1 with the aid of the diagram technique we have to

assume K < 1. In this case we omit in (23) the terms proportional to K", n > 1. From (23)
we have

BRI R T )

20, 224K 20,
io,+h (i, +h)?

(34

. Ao
iw,+h+ — K
()
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We renormalize each directed line in (349) by means of (22) and we obtain

v /wp+h+5o.70+/10K . .

Replacing now each directed line ———— in (24) by = \F_ — from (35) we get (33)

but with ¢ = rro and A = 44. To have (33) we must addltlonally renormalize all the ovals
in (22), (34) and (24).

We see that the approx1mat10n of Lines is valid when the coupling constant K
is small.

APPENDIX I!

Anlen) = (S =C D+ C P+ +
: PR

+r—1 EQH‘*?*I o)

b == ©+<? ’Jr

E=E <_v+@+ =)+ [j:*ﬁ
*M |+‘FH"*‘ (=35 fi__ )

c)

ey |t {7?
- =

+ =) + 5t

d)

1 We draw topologically ineQuivalent graphs
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6. Conclusions

We have obtained the results of Refs [3]-[6] using the spin diagram technique.
This technique, however, is not particularly convenient because of the great number of
graphs coming from the crystal field anisotropy. It is not so easy, in some cases, to calculate
the invers Fourier “time’ transform of the contributions from these kind graphs. It is
possible to reduce the number of graphs and to improve this technique. This will be given
in the next paper.

‘We wish to thank Dr A. Pawlikowski for helpful discussions.
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