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In this paper two effects are discussed: 1) line merging at the series limit, and 2) lowering
of the ionization energy in plasma. The first problem is considered on the basis of the Mozer
and Baranger (1960) field-strength distribution functions. We obtained (in the Inglis-Teller
model) a relation useful for determining electron density. When passing to the Holtsmark
distribution, our relation reduces to the Griem (1964) one. The second problem is considered
from the standpoint of the tunnel effect. Comparing a) spontaneous and b) tunnel depopula-
tion of atomic levels we obtained the relation between external electric field-strength (or
electron density) and the principal quantum number of the last quantized level of the hydro-
gen atom.

1. Introduction

The spectroscopic diagnostics of an optically thin layer can be performed on the
basis of the connections between the emission (or absorption) coefficient in the lines and
variables describing the state of plasma. Especially, the electron density can bs determined
in a simple way, without exact knowledge of the temperature and without the necessity of
accepting any assumption regarding LTE. The hydrogen lines, the half widths AAg of which
strongly depend upon the electron density N, (as a consequence of the Stark effect), can be
treated as “barometric lines” of plasma. The quantitative dependence can be written in the
form (Griem 1964)

N, = C(N,, T)435"%, M

where C(N,, T) is a coefficient very weakly dependent on N, and 7. This relation, accord-
ing to the considered line, holds with high accuracy (within 5 to 15 per cent) in a wide
range 10'* < N, < 10'7 cm—* and almost without any influence of temperature 7 (in the
5000 to 40000 K range) (sec also: Wiese 1965 and Lochte-Holtgreven 1968).

In optically thick layers the linear dependence between the number of atoms producing
the given line and the ordinate of its profile breaks down. This dependence fails first of all
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in the core of the line. Owing to the variability of the number of participating atoms in the
region within the profile of the line, there is no relation between the measured line width
and A4Ag.

The great optical depth and inhomogeneity of stellar atmospheres are the main
difficulties encountered when analyzing stellar spectra. Furthermore, there are some
difficulties in applying the Saha law to the determination of the mean electron density in
sources of low temperatures (of the order of 5000 K). In these cases an error of the order
of 10 per cent in the determination of the temperature of optically thick layers causes an
error of the factor of 10 in the obtained electron density (¢f. Grabowski 1973). Unsold’s
method (Unséld 1955), in its original version, is based on Holtsmark’s absorption coeffi-
cient; in a more general version (Grabowski 1969) the wings of the lines are described by
means of the Kolb-Griem approximation. Unséld’s method is not, however, a “self-suffi-
cient” one, because it requires knowledge of the number of atoms excited to the second
quantum level “above 1 cm? of the stellar atmosphere”. This last quantity can be established
with the assumption — especially controversial in the case of stellar spectra with very
broadened hydrogen lines'— of small optical thickness of the considered layer. Only the
theories of the disappearance of spectral lines at the series limit can be transferred to the
optically thick layers without introducing any significant ambiguity.

In the range of energy levels corresponding to the spectral region at the series limit,
processes take place which are decisive for two effects:

1) the spectrally observed shift of the series limit (mainly due to the Stark effect),
and

2) the depression of the ionization energy.

(This last effect, important e. g., when calculating the partition functions, is not easily
“readable” from the observations.)

2. The line merging at the series limit

Before the series limit of the hydrogen-like atoms is reached, a quasi-continuum is
caused by the overlapping wings of the neighbouring lines. The highest principal quantum
number #n*, above which the quasi-continuum begins, can be approximately determined
in two ways:

a) by comparing the distance between the neighbouring lines and the line-broadening
caused by fluctuating intermolecular electric microfields (Pannekoek’s model);

b) by comparing the separation (in terms of energy) between two successive levels
and the static splitting of the given level in a homogeneous electric field (Inglis-Teller
model).

2.1. Pannekoek’s model

The quantitative dependence between the number of the last visible line in a series and
the electron density was obtained for the first time by Pannekoek (1938) by means of the
superposition of the profiles calculated (in Pannekoek’s approximation, Pannekoek 1930)
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for different electron densities. After some simplifications this relation can be written in the
form (see also: Ivanov-Kholodny et al. 1961):

log N, =~ 22.2-6 log n*. )

In several papers by Kurochka the influence of both the Stark and Doppler effects
on the line merging is similarly considered. (Kurochka makes use of Griem’s approxima-
tion for the line-profile, Griem 1960.) The essential result obtained by him is the following
(Kurochka 1967):

log N, = 22-7 log n*. &)

Vidal (1966) employs for the line-profile the quasi-static approximation. On the basis
of the Mozer and Baranger (1960) distribution of microfields (which takes into account
both the screening of the field and the ion-ion correlation effects), Vidal introduces the
envelope curves of the intensity distribution in the emission lines at the series limit as the
datum more useful for determining electron density. The measurements of the ratio of
the envelope curves can be precisely performed. However, this quantity is suitable for the
electron density determination only in the case when the assumption of the optical thin-
ness of the considered layer is rigorously satisfied. If this assumption is not fulfilled, the
saturation in the center of the line (where the ratio of the envelope curves is measured)
gives observational effects similar to that due to an increase of the electron density. Owing
to the restrictions placed on the optical thickness of the layers and the emission spectra,
Vidal’s method is not useful for astrophysical purposes. Furthermore, this method — even
for the optically thin layers — has not been sufficiently verified by experiments.

2.2. The Inglis-Teller model

The highest quantum number n*, relating to the last visible spectral line, can be
‘approximately obtained when the Stark splitting of the level is compared with the energy
separation between two neighbouring levels of different principal quantum numbers:

3agn**(Fy  Zé* "
2Z " 2agn*’ &

where Z is the effective ion charge (for a neutral atom Z = 1), and {F) represents the
field averaged over the space fluctuations in the plasma.

Figure 1 shows the field-strength distribution functions W,(f) (Mozer and Baranger
1960) in the undimensional scale § = F|F,, where F, = ¢/g*> = 1.25x10~°N?'3, g being
the mean distance between the ions. The parameter of the represented curves is the shield-
ing and the ion-ion correlation parameter

r = ofop = 9.0x1072NL/6T~ 172, (5)

Here, gp denotes the Debye radius.
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The mean field {F) is determined from (F» = Fy{B), where it is most natural to define
the mean value {(f) as

B, = | BW(B)AP| § WB)dp.
Inglis and Teller (1939), accepting ad hoc 1.4 as the Holtsmark mean value of f, obtained
the known relation,

log N, = 22.96—7.51og n*+4.5log Z. ©6)
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wie Neutral I int
051 leutral poin
_—~r=00{(Holtsmark)
i r=g‘£
o =0
03 S r=06 -
X =08
02 4
0.7
| |

0 ]
0 10 20 0 @ 40

Fig. 1. The Mozer and Baranger (1960) field-strength distribution functions W.(8). The curve W;—o(f)
covers with the Holtsmark distribution. (The drawing after Cowley 1970)

1 the basis of the Mozer and Baranger distribution functions W,(f) we obtain the ap-
proximate relations’:

log{p>, = 041 —0.19r (for Z=1)
+.001 4.001

log <B>, = 041 — 0.27r (for Z = 2)
+.005 — +.10

for neutral and single ionized atoms, respectively, with errors that can be neglected.
Substituting these mean values into (4) and taking into account (5) yields:

log N, = 22.57—7.5log n*+2.6 x 1072NLeT~1/2 €)
log N, = 23.92—7.51log n*+3.6 x 10" 2N2/°T ™12, (8)
again for neutral and singly ionized atoms, respectively. The last terms, the values of

which under typical conditions are of the order of 0.10 to 0.30, represent both the screening

and ion-ion correlation effects.
By comparing the distance (in the energy scale) between successive high levels and the
line width (in the Holtsmark approximation of Underhill and Waddel 1959) Griem (1964)

obtained the following result:

log N, = 22.57—"71.51og n*+4.5log Z. )

1 These results are found by numerical integration and the least square method.
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For Z = 1 and Z = 2 this result is equivalent to the formulae (7) and (8), respectively,
expect for the terms dependent on N, and T.

The equations (7), (8) and (9) were received with different physical models (Griem’s
calculations rather correspond to Pannekoek’s model). The agreement of these results
seems to indicate that Egs (7) to (9) are more physically justified than the earlier approXi—
mations. A similar conclusion. arises from Fig. 2, in which the curves of log n* versus log
N, are compared. This figure also contains points relating to Mohler’s (1939) experimental

1 I : ] | L '
2 3 % %5 76 log N

Fig. 2. The dependences of log #* versuslog N,. Designations: ¢ — the Pannekoek Eq. (2); d —Inglis-Teller
Eq. (6); ¢ — Griem Eq. (9); f — Eq. (7) being the result obtained in this paper. The Mohler’s measurements
are designated by circles. The curves b and a represent the tunnel effect: 5 — Eq. (22), ¢ — Eq. (14)

measurements of the alkali spectra, made for a wide range of electron densities. The filled
circles correspond to the measurements made under conditions of over 50 per cent
ionization, whereas the open circles represent the measurements with low currents and low
ionization. The measure of the degree of the importance of the last term in Eq. (7) (in the
3000 to S000K range, approximately corresponding to that of Mohler’s experiments) is
the discrepancy between the e (Eq. (9)) and f (Eq. (7)) curves.

The formulae (6) to (9) are obtained in quasi-static approximation for both ions and
electrons (for comments see Griem’s book, p. 126). They are applicable to lines originating
from higher levels of the majority of atoms and ions (because in this case the Stark broaden-
ing always becomes hydrogen-like).

3. Depopulation of energy levels by the tunnel effect

The reduction of the ionization energy in an external electric field was first theoretically
discussed by Robertson and Dewey (1928). They considered this problem from the stand-
point of the classical quantization of the orbits in a homogeneous field. Oppenheimer
(1928) gave a rough quantum-mechanical treatment of this problem. More exact calcula-
tions were made by Lanczos (1931). He calculated, in WKB approximation, the critical
fields in which the extreme components of some lines of the Balmer series disappears
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owing to the tunnel effect. This problem was recently considered by Ivanov-Kholodny
et al. (1960).

Unsold (1948), with the help of a simple nearest neighbour approximation, employed
the classical quantized orbits method to plasma conditions. In this approximation the
effective potential energy function U(r) varies along the r-axis according to the formula:

U@r) = —e? G o B i). (10)

ro—F Ty

(This axis is attached to the atomic nucleus and directed towards the perturbing proton
placed at a distance of ry; Unsold assumes 7, is equal to the mean distance between the
ions.)

Between the atom and the perturber arises a potential barrier, the maximum height
of which is given by U(ro/2). If the intra-atomic electron is in the n-th state, the total
energy E, of which is higher than U(ro/2), then it passes classically to the potential well
of the perturber. From the condition E,* = U(ro/2) follows Unsold’s relation,

log N, = 21.88—6 log n*, 1y

(n* is the last quantized energy level} as well as an equivalent formula for the reduction
of the ionization energy (in eV):

Ay = 6.96x 107" N22, 12)

The geometry of the field (10) is appropriate for one-dimensional motion. In Unséld’s
method —— relating to three-dimensional quantum system — this geometry was used for
defining the maximum height of the potential batrier and, consequently, for performing
the classical separation of periodic and of aperiodic orbits. Ivanov-Kholodny ez al. (1960)
employ this geometry in their considerations of the tunnel effect in higher states, i.e. the
quantum effects, the realization of which occur in the time interval corresponding to 10°
to 10® oscillations of the atomic electron.

In simple cases the consideration of the tunnel effect can be reduced to the one-
-dimensional Schrédinger equation; the necessary-condition is here the separability of
the potential energy function relating to the space variables. We introduce the co-ordinate
system attached to the atomic core with the z-axis directed towards the perturber. In these
co-ordinates the potential energy function of the atom-perturber system has the simplest

form:
U(x, y,2, X,Y,Z) = F[Z7 —(x2+y* 42 V=P +y*+(Z -2’} M, (13)

where the co-ordinate of the perturber are denoted by capital letters, and the co-ordinates
of electron by small letters. This function is not separable in any orthogonal co-ordinate
system?. Separation can be performed only when x = y = 0, ie. in the particular case

2 Exceptionally, the separation is possible in the spheroidal-prolated (cli psoidal-degenerated) co-
-ordinate system. However, this result is not valid along the z-axis (J. Halenka 1972, private information)'
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of one-dimensional motion along the z-axis. ‘Then, the Eq. (13), after putting z — r and
Z — 1o, reduces to Eq. (10). Concluding, we state that acceptance of the field geometry
(10) as suitable (from the point of view of the tunnel effect) for a three-dimensional quantum
system is convincing rather by intuition than by the mathematical formalism.

Using the relation (10), Ivanov-Kholodny et al. (1960) obtained

log N, = 21.65—6log n*. (14
This result was extended, without any sure basis, to the hydrogen atoms in plasma,

We suppose that the homogeneous electric field of strength F [cgs] is in the positive
z-direction, so that the force acts on the electron in the negative z-direction. The motion

Fig. 3. The course of the potential energy function (15) (solid lines) along the z-axis. The arrow below
shows the direction of the force acting on an clectron )

of the electron in the field of nucleus of charge +e and in this external field is determined
by the potential energy function

U= —é?r+efFz; (15)

(z is the component of the distance # in the direction of the field; the changes of (15) along
the z-axis is shown in Fig. 3). The Schrédinger equation, suitable for this case, reads

h2
P V¥ +(fr—eFz+E)¥ = 0, 16)

where E is the total energy of the system and p is reduced mass. This equation can be
easily separated in a parabolic co-ordinate system. However, for our purpose the simplest
description of the dynamics of the motion in the presence of the external homogeneous
field can be obtained in the cylindrical co-ordinate system, where the perturbation is
connected with the z co-ordinate only.
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It is a well-known fact that in these co-ordinates the space variables cannot be fully
separated®. After conventional separation of (16) with relation to ¢, we get an equation
dependent on ¢ and z. This equation, however, under the condition ¢ &~ 0 can be divided
into two equations:

d2R+1 dR+< m2>R v
- [ 8 — — = )
do* o dp e =
d’y  2u e
EZ“F E+T—[*—EFZ 1/)=09 (_OO<Z<+OO)a (18)
2uE,

where &, = , Ei+E, = E, and &(p, z) = R(0)y(z). Equation (17) gives the exact

“hz
“partial solution of Eq. (16) along the z-axis and in its surroundings only. From the stand-
point of the tunnel effect this does not lessen the generality of the considerations, because
the dynamics of the perturbation is exactly described by the Eq. (18); Eq. (17) is a ““tacit
spectator” only. -

In Egs (17) and (18) &, and E, are the separation constants. Owing to the local character
of Eq. (17), &; cannot be established from the boundary conditions. This equation has two
independent solutions; for &; # 0 they are given by the Bessel functions. The first solution
is the Bessel function of order m, namely, J,(/¢10) or L,(./€;0) for &, > 0 and &, < 0,
respectively (see, e.g., McLachlan 1955). The second solution, Y,(/210) or K,(:/210),
respectively, tends to + oo for ¢ — 0 and, therefore, should be omitted. In particular,
for m = 0 we get Jo(0) = I,(0) = 1, independently of the sign of &,.

In the case of ¢; = 0, Eq. (17) reduces to the Euler equation. As is well known, this
last equation — after the substitution of a now variable 7 by means of the relation ¢ = &' —
can be solved elementarily; its particular integrals are R = ¢*™ = p*™. (The solution
that tends to infinity for ¢ — 0 — similarly as in the above case — should be omitted.)
In particular, for m = 0, we get again along the z-axis R(0) = 1.

For further purposes it is more important to determine the separation constant E,
in Eq. (18). This equation, after omitting the term —eFz, is formally equivalent to a radial

equation
d*y 2u e’ (+1)
— E°+ - =0 19
dr? 2 F [hz ( r) r? ] g (19)
for the hydrogen atom in the state / = 0. (We notice that the values Ey = — p?Z%e*2h%a}

follow from the condition imposed on the function y(r) at r - +o0 (¢f. Landau et al.
1948, § 36.)) The solution of Eq. (18) with F = 0 for z > 0 is identical to the solution of
Eq. (19) for I = 0. Because the operator d?/dz*, and the potential energy function —e?/|z|,
are unvariable with respect to the reflection z — —z, the above solution can be (exact

3 Equation (16) without the Coulomb term is separable with respect to z, g, ¢ and has a solution
(Oppenheimer 1928) given in cylindrical functions.
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to the factor +1) extended on the negative z-semi-axis (see, e.g., Landau ef al. 1948 § 19).
Thus, for F =0, we have E, = EP. For F # 0 the perturbed eigenvalues E, = E(F)
can be calculated by means of the standard perturbation theory, starting from the condition
E! ~ E? when F = 0. For the hydrogen atoms we have the known results E(F) = E(F) =
= EX+6,(F) and <(E,) = E? (the first-order Stark effect alterations of energy states,
8,.(F), are all diminishing quantities due to the averaging over I).

Under plasma conditions the value E° represents the “centre of gravity” of the
broadened s-th energy level and approximately of spectral line for which this level is
the higher one. Thus, E? represents the mean feature of the whole line in any fields (or
electron densities), except the extreme high fields of the order of 10° to 10° V/cm (because
then the second-order Stark effect becomes important).

So, the consideration of the tunnel effect in cylindrical co-ordinate system is reduced
to the consideration of one-dimensional motion described by equation

d2 2 2

C¥ (B S —eFz)p =0, (—o0<z< +00). (20)
dz h |z

This equation cannot be solved exactly. Its solution in WKB approximation is showed

in Fig. 4. The upper part of this figure shows the potential energy function (15); schemati-

cally outlined below is the real part of (z). The solid lines represent the physically accep-

A U(Z),E \\\\

Fig. 4. The schematic discussion of the solution of Eq. (20). The arrows show direction of the force (see
Fig. 3)

table solution of Eq. (20); the thin ones show the course of the asymptotic solution, the
thick lines the locally exact solutions. (For a detailed discussion see book by Schiff or
Landau and Lifshitz.) The hatched strips are transitional regions.
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The coefficient of transparency of the barrier, D, is determined by the solutions
of Eq. (20) in the regions I and III, and is given by (Landau-Lifshitz 1948, § 50):

22

9- S
D,(F) = exp l:—- 5 J\/Z,u(ezjz+er-—E,?) dz] , e>0,z<0. @D

Z1

This result is only valid when: 1) in the whole region of the motion the field U satisfies
the quasi-classical conditions, 2) the exponent in (21) is large, whereby D is small. In this
paper, both these conditions —— except in the surroundings of z = 0 — should rather
be satisfied. Near z & 0 the region of applicability of the WKB approximation is restricted

(A)
500
200

700

50

20 | L | 1 L
5 7 70 %5 20

(n)

Fig. 5. The “thickness” of the barrier (curve a), and the distance of the “inside classical return point” z,
from the atomic nucleus (curve &) versus the principal quantum number 7

to distances larger than the Bohr “radius™ a,. From the Fig. 5 (curve b) we see that even
in lower states, in relation to which this restriction is the sharpest, the distance of the
“internal classical return points™ are larger at least by a factor of 10. Similarly, owing to
the large thickness of the barrier (Fig. 5, curve a), the asymptotic solution between the
“return points” z, and z, could be used.

The probability (in s—* units) of the penetration of the electron through the potential
barrier is given by the product D,(F) x v, , where v, is a frequency of quasi-classical oscilla-
tions of the atomic electron. For the n-th level of the hydrogen atom is

" e 1 0.658 x 106

—1
72 = w3 7]

"o 2magn® (pay)
Now, the probability 4, (in s! units) of the depopulation of the n-th level owing
n—1

to spontaneous transitions to the lower k-th levels is given by 4, = ) A,;. (The values
k=1

of A, were taken from the compilation by Wiese et al. 1966.)
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The sharp dependence D = D,(F), such as for the 15-th level of the hydrogen atom,
is shown in Fig. 6. For the determination of the critical field F,, for which the -tunnel
depopulation is equal to the spontaneous one of a given level, the equation D,(FYx Ve = A,
was solved numerically with respect to F. The electron densities N,, appropriate for the

74.60 74.65 {og N
T 1 I
aQ
2
]
5 = 1
i
0
75+
| | |
5000 5500 6000
F(V/cm)

Fig. 6. The examplifying illustration (for n = 15) of the sharp dependence D = D,(F)

values of F,, can approximately be assigned by means of the relation F, = Fo{B>._,
or by the equivalent one,
log N, = 1.5 log (F.)ce+12.74.

Between the values log N, (or log F,) and log n* there are the nearly linear relations
log N, = 21.45 — 5.78 logn*,

+.0i0 +.0Gi0 (22)
log (F)yjem = 8.28 — 3.85 logn*,
+.007 £.006 (23)

which were obtained by the least square method. (All calculations in this paper were
performed on an “Odra 1204 computer.) Equation (22) corresponds to the following
depression of the ionization energy:

log Ay.y = 0.346 log N,~6.29. (24)

. 4. Conclusions

The relations (14) and (22) are compared in Fig. 2. We notice that these two results
were obtained with the use of different physical models: Eq. (14) from an analysis of the
one-dimensional motion of an electron in the fields of the atomic nucleus and of the
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perturbing proton; Eq. (22) from an analysis of the three-dimensional motion in a homo-
geneous external electric field. The high similarity of these results permits us to presume
that the model errors in both cases are not large, especially when the depression of the
ionization energy is considered. It seems, also, that the best results (among the approxi-
mate miethods of determining electron density) are given by the formulae (7) and (8).
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