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The fact of two distinct temperatures of the magnetic phase transitions, occurring
separately in the two crystallographic sublattices of neodymium, is interpreted using the
model of a single Nd*? ion placed in a metallic and magnetic matrix with electrostatic field
point symmetries D34 and Djp.

We take into consideration the interaction of the Nd*? ion with the crystal-electric
field and its indirect exchange interaction with surrounding ions regarded in the MWMF
(modified Weiss molecular field) approximation. The necessary condition for obtaining two
distinct values of the magnetic phase transition temperature is the decoupling of the set of
two self-consistent equations for the LRO (long-range order) parameters into two mutually
independent equations. This decoupling is feasible since, as shown here, the two contributions
to the molecular field from the other sublattice cancel out mutually.

The second condition necessary for the occurrence of two distinct transition temperatures
is the differentiation of the molecular fields at corresponding sites belonging to the two sub-
lattices. This difference is due to:

‘1) the different densities of packing of neighbours of the cubic and hexagonal sites;

2) the long-range nature of the indirect exchange integral (via the conduction electrons)
which enables the more distant neighbours to play an important part;

3) the type of magnetic structure, exhibiting a different translational periodicity of
the magnetic configuration in each sublattice;

4) the direct influence of the crystal field as revealed in the factors % and 3f% in
the final expressions for the magnetic phase transition temperatures.

1. Introduction

We are concerned with magnetic phase transitions of the type: order — disorder,
depending on the spontaneous emergence (with decreasing temperature) of magnetic
long-range order (LRO) accompanied by breakdown of symmetry.

It is the main purpose of this paper to explain semi-quantitatively the reasons for
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a peculiarity exhibited by the magnetic phase transitions of neodymium [3-5] consisting
in a remarkable differentiation of the temperatures of the magnetic phase transition in
each of the two crystal sublattices of the dhep structure of neodymium. The difference
amounts to 11.7°K (the magnetic phase transition in the hexagonal sublattice occurs at
19.2°K, and that of the cubic sublattice at 7.5°K [3-5]).

In the case of a phase transition of the second order, the LRO parameter decreases
continuously with increasing temperature and vanishes at the transition temperature.
At temperatures above the transition point, the LRO parameter vanishes ([2] and Refs
therein).

For neodymium, we shall define two LRO parameters in the form of thermal averages
of the total momentum operators (L)T and <.7 sy for the two sublattices, respectively.
Long-range ordering in this system arises due to the presence of an LRO internal field H,
which substitutes the indirect exchange interaction of each particular ion with other ions
of its environment [1], [2]. In our considerations, it is the modified Weiss molecular
field [1], [6], [7]

The LRO parameters <J ,>r and <J ) are related to the internal fields H% and H®
by the self-consistent equations:

Fadr = AT 1. T
Tpdr = FEREEKI D1, Tdn)- (1.1)

The indices F and T stand for the indirect exchange interaction strength and the temper-
ature, respectively; their presence indicates that the LRO parameters depend in general
on inter-ion exchange couplings and temperature.

To determine the magnetic phase transition temperatures in the MWMF approxima-
tion, we make use of Eq. (1.1). In the light of our previous considerations, the magnetic
phase transition temperature is the temperature below which there exists at least one non-
zero solution of Eq. (1.1) for T or Tpdr.

In the course of our further discussion, we shall determine an explicit form of Eq. (1.1)
for neodymium, in order to derive the magnetic phase transition temperatures for the two
sublattices.

2. Determination of the LRO parameters for neodymium

. Dueto the relation of proportionality between the total angular momentum operator
J and the magnetic momentum operator ﬁ which holds for rare earth ions, any space
ordering of thermal averages of the total angular momentum operators attached to lat-
tice sites entails simultaneously a magnetic ordering of the crystal.

We proceed now to obtain the canonical thermal averages of the observables J* ¥
and J # at both types of crystal site of neodymium metal. We resort to our previous results
concerning the energy levels of the f3 electron configuration in the crystal-electric and
molecular fields (see [7]).
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1) Nd+3 ion at the cubic sites ([7, 8])

The energy values as well as the wave functions [ > and |9$ > of the ground
Kramers doublet states in the molecular field were derived in [7]. The quantum-mechanical
averages of J%, J% and JZ in these states are equal to:

YOI = — 318, cos g,
YOIy = — 118, sin ¢,
WY = 0; -
<'P(C) W,gc) 1 1B.l cos ¢,
HPIT9Ey = 118 sin g,
Gy = 0, @1

where “c” stands for the cubic position, ¢, is the spherical angle between the hexagonal
axis a, in the basal plane and the projection of the molecular field H(‘) on this plane

Be =3 U+ MY +PP VI +M,) T+M) [7],

J = 9/2,

M, M, and M, are the magnetic quantum numbers of the *I5/, term; for the ground
state Kramers doublet Within the point charge model of the crystal-electric field, they are
equal to: My =3, M, = —3, M3 = I;

¢, ¢, ¢§? are the wave coefficients of the doublet (see [8]).

Resortmg to the well-known formula for the canonical thermal average of an observ-

able, we obtain, on restricting our considerations to the ground Kramers doublet:

. 1 o©(R)
R = — =Bt >

<Jc( n)>T 2 lﬂc] h kT Cos (pa

Poye = — L1y SR 2
o)/ T — 2 c kT sin (pc’ ( 'Za)

where 72,, are position vectors of sites belonging to the cubic sublattices 4 and 4’ with respect
to sites chosen as the centres of these sublattices;

0@ = guplBJHR,)  (see [7]).
2) Nd+® ions at the hexagonal sites

The energy values and wave functions of the two lowest levels in the molecular field
are given in [7].
Similarly, as in the case of the cubic site, we have:

CYPLIF P = 1 [By] cos @y
<7P(h) (h)> 3 1By sin Phs
CyPiIzp®y = o; (2.3a)
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PPV = — 1Byl cos @,
KYPITpEy = — 1Byl sin @4,
YPTipPy =0, (2.3b)

where “h” stands for the hexagonal position, ¢, is the spherical angle between the projec-
tion of the vector H® on the basal plane and the a,-axis,

By = PP VI +M)(T+M,),  (see [7])

T =902,
M, = —3, M; = % within the point charge model of the crystal-electric field,
P, ¢ are the wave coefficients of the ground Kramers doublet for Dj, symmetry

«©of the crystal field [8].

The quantum-mechanical averages of JZ vanish since the molecular field H® takes
‘the direction perpendicular to the c-axis [71.

The canonical thermal averages of the abservables J% and J are written as follows:

L 1 R,

TRt = 5 [Bal th 2 kfl" )COS P (2.4a)
e 1 (h)( ")

IR T = - P4l th sin gy, (2.4b)

2

‘where TE,, are position vectors of hexagonal sites with respect to the centres of the sublattices
B and C, respectively.
Let us now introduce the following notation:

. (C) R

i<Jc(Rn)>Ti !Bcl (T n) B (253)
e ‘ OE

(T RIrl = 5 il th k(T ) 2.5b)

As seen, the thermal averages of the total angular momentum components (see: (2.2)
:and (2.4)) were derived in the single-ion approximation. However, space correlation of the
moments was taken into account by way of the molecular field, which varies from one
.site to another.

3. Explicit forms of the relations: |<.7A>T[ = m(H(A)), and KJB)TI = f‘z)(H(B))

At this point of our discussion, we resort to available experimental information on
‘the magnetic structure of neodymium [3-5] on the basis of which the following of transla-
tional dependence of the averaged moments can be assumed for the distinct sublattices of
neodymium.
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1) Cubic sublattices (4 and 4'):

TR YT = T adrcos (ke Raya), (3.1a)
TRy )>1 = T ayp©08 ((kes Raryarn) + 7400 (3.1b)

where (3 4,07 and (’.\7 4> stand for the thermal averages of the total angular momentum
operators attached to the sites: 4; and 4’ with largest moments of magnetic structure in
the respective cublc sublattice;

(J(R AT (J(R 4, )yr are thermal averages of the J operators, localized in the cubic
sites A,,, A,,,

Ry, Ry, are position vectors of cubic sites belonging to the sublattices 4 and 4’
with respect to the central sites A, and A, respectively;

k, = u2b1 is the wave vector of the cubic sublattice [3], [4] (b1 — the reciprocal

lattice vector);
v, is the difference in phase between the sinusoidally modulated configuration of the

sublattice 4 and the sinusoidally modulated configuration of the sublattice 4’ (the differ-
ence is taken between site 4, and one of its nearest neighbours in sublattice 4').

2) Hexagonal sublattices (B and C)

GRu)>r = <T5drc0s (B Rpyp) +75)s (3.22)
GRe)>r = Foprcos (Fn Reye) +0): (3.2b)

where B and C denote the sites with largest moments of periodic magnetic structures in the
respectlve hexagonal sublattice;

k,, /.tlbl is the wave vector of the hexagonal sublattices [3], [4];

¥s,» Yc, are differences in phase between the sinusoidally modulated magnetic structure
in sublattice 4 and the sinusoidally modulated magnetic structures of the sublattices B
and C, respectively (the phase differences are taken between site 4 and its neaiest neigh-
bours chosen in sublattices B and C, i. e. the sites B, and C,).

As seen from Eqs (3.1) and (3.2), the temperature dependence of the LRO parameters

is determined by their “space amplitudes” i. e. the quantities (J 40T (J AT (J BT (JC)T
Since we are mainly interested in the temperature dependence of the LRO parameters,
we shall restrict our discussion to these amplitudes only. The reason for this simplification
is inherent in our problem, which is aimed at the determination of the temperatures at
which the LRO parameters become equal to zero.

From Eqgs (2.5a) and (2.5b), where the index “c” stands for 4; and A4}, and “A”
for B, and C,, and on resorting to the formulas for the exchange energies ©© and &®
expressed as functions of the molecular fields at the appropriate sites, we obtain finally the
following explicit forms of the relations:

KT D0l = FRED),  KTadel = FRHD).
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1) Cubic sites:

1 guB]ﬁ,ﬂHex(RA )
J = - th ——— £
i< A1>Tl > B4l T s (3.3a)
2 1 gﬂBlﬁAlHex(RA ) ;
Ja = - th == I .
[T w27l 3 1Bl T | (3.3b)
where the factor |f,] is the same for all cubic sites.
2) Hexagonal sites:
0 ,3 g"‘BIBBIHex(RBx
i{Jp th ! '
iKIprrl = 2]/33] T (3.4a)
+ 1 guslBslHe(Re,)
=~ |yl th EEEE R0 .
[KJe2rl > B3l T (3.4b)

where the factor. |B5] is the same for all hexagonal sites.

4. Explicit forms of the relations:
H® = HOT 5. <Tpr) and B = BOC dr, <Tad)

The molecular field at a particular site is a linear combination of the thermal averages
of the total angular momentum operators attached to the neighbouring sites. The coeffi-
cients of the linear combination are directly proportional to the indirect exchange integrals
for the appropriate distances. The register of neighbours for the sites of the two types in
dhep structure indicates that cubic and hexagonal sites differ in the density of packing of
their neighbours. This difference becomes apparent already at the distance ¢, at which the
cubic site has two neighbours belonging to the same sublattice, whereas the hexagonal
site has no neighbours at all at this distance.

With regard to the preceding and other information on the neighbourhood of the
sites, we can write the formulas for the molecular fields at the sites: 4,, 47, B, and C,,
limiting our considerations to the distance c.

1) For the cubic sites we have:

> 1 2 1 ks
Hex(RAl) = - — Fﬁ1<JA1>T_ S B Fﬁ1<JB>T_
8lp gup
1 2 1 e
—~ —F{Jor— — Fildudn (4.1)
8iip 8l

o o 1 . 3 1 &
Hex(RA'i) SRS "—‘Fﬁu(JA')T— _—Fﬁ’1<JB>T_
glp gup

1 2 1 2
- —Foicdr— — Fa,{JaDr (4.2)
Up glip
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where
Fﬁl = Fl Z(l) cos (kc’ RA1A,,)3
n

Eﬁl =F, Z(l) cos ((E;.s ﬁAan—ﬁAlsl)'l‘?Bl)‘i‘Fz 2(2) cos ((I—éh’ Ryu5,—Ry4.5)+78,),
Fﬁl =F, Z(l) cos ((Eha l-iAiCn_RAlcl)'l'yCl)'}'Fz Z(Z) cos ((’;m Ruc,—Ryc)+7c))s
Fﬁ; = FS 2(3) COS ((Ec’ RA1A’n_RA1A'1)+yA’); (4.13)
F4, = F; Y, Weos (ke RA’lA’,.)""YA"l)a
F%, =F Y% cos ((Ry Rayp,— Rar) +75)+F2 3@ cos (K Ryro5,— R i5) +73),
n n
Fa,=F, Z“’ cos ((E,, ﬁA'lcn —Ryc)+ve)+F2 Y P cos ((Eh, ﬁch,. _RA’lc]) +7c0)
Fﬁ'; = F; 2(3) cos (key Ryria,~Rara)» (4.2a)
where F;, F,, F5 are indirect exchange integrals at the distances: a, a\/f and ¢ = 1.63 a,
respectively; 2 denotes the summation over the coordination sphere “i”.
2) For the hexagonal sites we have:
. r Iy E=g T LI e 1" I e
H,(Rp) = — — Fg{Jppr— —— Fp,{J 4 0r— — Fp,{Ja>r (4.3)
gz gH gu

B B

and
> o 1 ¢ 5 1, 2 Iy o
Hex(RC1) = —FC1<JC>T'_ —PC1<JA1>T— —FC1<JA’>T9 (4-4)
glp glp 8lp

where
Fg, = Fy Y7 cos (ki Rp,5,)+78),

Fg, = F; Y™ cos (k., Ry, 4,— Rp,4,)+F, Y cos (k,, Rp, 4, —Rp,4,),
n n

Fﬁ; =F, Z(l) cos ((Eca Rp,ar,—Rp ) +y4)+F, Z(z) cos ((Ec’ §B1A’n—RBlA’1)+yA’1);
(4.3a)

Fg, =F, Z(l) cos ((iéh’ ﬁclcn)'i‘?cl),
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Féi =F, Z‘” COos @a, I_éclA,,“Rcle)'l'Fz 2‘2’ cos (Ec, RCIA,."Rcml),

n n

Fc; =F, Z(l) Cos ((Ec, Re,a,—Rear)+74)+F, Z(z) cos ((lzc, jéClA’n_ﬁclAﬁ)'*'YA’l)s
n n

(4.4a)

where F,, F, are indirect exchange integrals at the distances a and a ﬁ, respectively;

2® stands for the summation over the coordination sphere *‘”.

The vector equations (4.1)-(4.4) may be rewritten in Carthesian components on insert-
ion of the averaged components of the total angular momentum operators from Eqgs (2.2a),
(2.2b), (2.4a), (2.4b) using the notation (2.5a) and (2.5b). It should be kept in mind, more-
over, that at any particular site, the magnetic moments takes the direction of the molecular

field H,.[6].

Let us revert to the experimental data on the magnetic structure in neodymium
[3-5]. It is easy to notice that for the magnetic ordering exhibited by neodymium, the
following relations are fulfilled:

[KTadri = KTudrh @a= 9un Yay =

l<'-;B>TI == K:}c>rla @8 = Pc5  Yc, = VB, T 4.5)

Taking into consideration the environments of the particular sites, we can write due to
Eq. (4.5):

F4 = —F4, F4i = —Fi, FS =—-F;, FS =-Fi;
Fgl o _Fgﬁ Fgl = —Fg;’ Fé1 = —FC;' (4‘6)
Finally ,we come to the following formulas for the components of the molecular field H,:

1) Cubic sites

- i - ,
H:x(RAi) . KJA1>T1 (F21+Fﬁ1) COS @y,
8ip
s 1 2 ¥ PLe
Hex(RAl) = = W I<JA1>T| ('PA1 +FA1) S @,
8ip
HZ(R,) =0 (4.72)

and

H:x(ﬁA’l) = _Hjecx(ﬁAl)a
H(Ry) = —HL(R,),

H:(Ry,) = 0. (4.7b)



555
2) Hexagonal sites

- 1  »
Hzx(RBl) B = == ]<JB>T[FII;1 COS @p,

B

-~ 1 = .
H,(Rp) = — g— KJB>T|F31 SIn @,

B
H:(Ry) =0 (4.82)
and
| Hi(Rc) = —HA(R,),
H(Re,) = —HL(Rs),
HZ(R¢) = 0. (4.8b)

Since the molecular field components at the sites A and C,; differ in sign only from those
at the sites 4; and By, respectively, in our further consideration we shall discuss two sites
only: one cubic (4;) and one hexagonal site (B;). The strengths of the molecular field at
the sites 4; and B, are equal to:

» i1l ,
H(R,) = o~ DI a0l (F4,+F4), (4.92)
B

- i £
Hex(RBl) = ng [<JB>TIF§1 (49b)

Egs (4.92) and (4.9b) are explicit forms of the relations between the LRO field and
the space amplitudes of the LRO parameters. The temperature-dependence of the LRO
parameter is determined by its space amplitude and, therefore, from our point of view,
it suffices to examine the temperatures at which the space amplitudes of the LRO parameter
vanish.

5. Determination of the magnetic phase transition temperatures

Combining Eqgs (3.3a), (3.4a) with Eqs (4.9a) and (4.9b), respectively, we come finally
to the explicit forms of the self-consistent equations for the LRO parameters or, strictly
speaking, the space amplitudes of the LRO parameters, as follows:

F4 +F4Y)
(Gadel = 5 0 o (HEACATERD 5 ) &)
and
IﬁB'FB1

(G521 = 5 184 th( |<JB>T|) 5.2)
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On performing summations of the cosines over the appropriate sites in F4, Fj}; and F 31,
we obtain:’

4r
F = 2F, (cos Ha+2cos — u2>
73 NE
_F4 = —2F,,
47 2
B - +
Fy, = 2F cos yg, <cos ﬁ f1+2 cos \/——5 ﬂl) . (5.3)
Inserting Eqs (5.3) into Egs (5.1) and (5.2), and on making use of the relations:

KT a2t = KT Opl and K>l = [KIp)ri cos vp,

(see: Egs (3.1) and (3.2)), we come finally to the following relations:

2n
1Bl [F1 (COS \/— pat2cos —= NE Nz) "Fs]

[Bal th| —— = — =K, (59

[N

1K a0l =

A o
lﬁBiFl (COS \/3 I"'l_lt2 oS —= \/3 ”1)

= KTa 1l - (5.5)

2 1
I<JB1>T! = :'z‘ IBBI th

As seen, the system of self-consistent, mutually conjugate equations for the LRO
parameters decouples into two independent equations, since within the framework of the
approximation adopted by us, the exchange ficld at a site under consideration depends
only on the LRO parameter of the sublattice to which the site belongs. The magnetic
crystal is thus decoupled into two magnetic subsystems, corresponding to the crystallo-
graphic sublattices. It should moreover be noted that, on limiting ones considerations
to the distance ¢, the sites B and C are not neighbours yet. The mutual independence of
the planes B and C does not play, however, any part at all in the differentiation of the
magnetic phase transition temperatures. The essential role belongs to the mutual compensa-
tion of the contributions from the other sublattice to the exchange field at any site.

On the basis of Egs (5.4) and (5.5), we can determine those temperatures at whlch
the space amplitudes of the LRO parameters i.e. the quantities KT A1>Tl and [(J BT
become equal to zero. In other words, at those temperatures, the space ordering of the
magnetic moments spontaneously disappears i.e. a phase transition takes place.

The determination of the magnetic phase transition temperatures is performed
according to a very well-known procedure (see: [6]).
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We obtain the following results:

1 2n 3
kTy, = ﬁA l:Fl (cos NE Ha+2 cos —= 3 ﬂz) "Fs] , (5.6)
kT, ﬁ F ( 2 ) (5.7)
¢Ty, = = B F1 | cos —= 7 Uy +2cos — \/ U 3.
: 3

As seen clearly from the above equations, the difference between the two magnetic phase
transition temperatures of the crystallographic sublattices of neodymium is determined
by the unequivalence of the crystal positions in the dhep structure. The different packing
densities of the neighbours of the cubic and ths hexagonal sites give rise to the indirect
exchange integral F; in Eq. (5.4).

The quantities u; and p,, which also contribute to the difference in magnetic phase
transition temperatures, are directly related to the magnetic structure of neodymium (see

Egs (3.1), (3.2)).

6. Final remarks

Our conclusions are summarized as follows:

We have specified the factors leading to two different magnetic phase transition temperatures
for the two sublattices of neodymium. The necessary condition for this differentiation is
the splitting of the set of the self-consistent equations for the LRO parameters into two.
mutually independent equations. The splitting is determined by the type of magnetic struc-
ture which implies at each site the mutnal cancelling out of the contributions to the mole-
cular field from the sublattice to which the considered site does not belong. Owing to this
compensation, the magnetic crystal behaves like a system consisting of two magnetic mutual-
ly decoupled subsystems, corresponding to the crystallographic cubic and hexagonal
sublattices, which can thus have different temperatures of magnetic phase transition.
The chief role herein is played by the single-ion magnetic anisotropy responsible for the
“plane” character of the magnetic ordering (with no z-component). The single-ion anisot-
ropy arises here due to the crystal-electric field.

The second necessary condition for the differentiation of the magnetic phase transition
temperatures is the occurrence of different molecular fields at the cubic and hexagonal
sites. This difference is due to the following reasons: the different density of packing of
the neighbours of a cubic and a hexagonal site; the long-range nature of the indirect
exchange integral which causes that the more distant neighbours still have to be taken
into account; and, finally, the quantities p; and u, (see: (5.5) and (5.6)). The latter are
directly related with the magnetic ordering. The quantities u; and p, determine the trans-
lational dependence of the magnetic ordering within the cubic and the hexagonal sublattice,
respectively.

The direct influence of the crystal-electric field is expressed by the factors % 7 and
3 B2 for cubic and hexagonal sites, respectively.

The authors are much indebted to Dr T. Lulek for his fruitful remarks.
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