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Using the method of double-time temperature Green’s functions an integral equation
for the non-spin-flip scattering amplitude has been obtained and solved exactly in the limit
U — 0. The position of bound states within the gap is found and their structure is examined
by means of the density of states and the electronic density distribution.

1. Introduction

The problem of bound states in superconductors with a magnetic impurity has already
been discussed in the works of Sato [1], Celli [2] and Zittartz [3], [4]. In Zittartz’s
paper the hamiltonian used was the sum of the s-d exchange and the lineatized BCS hamil-
tonians.

In the present work we examine the position and structure of bound states on the
basis of calculations employing a hamiltonian made up of the Anderson and linearized
BCS hamiltonians. The hamiltonian chosen thus allows only states of antiferromagnetic
impurities having negative energies. The resulting set of equations of Green’s functions
can be reduced to an integral equation for a non-spin-flip scattering amplitude, very much
like the equation arrived at the case of an ordinary metal by Mamada [5].

In the second part of this work we derive the whole set of equations of Green’s func-
tions. Its solution consists in finding the integral equation for the non-spin-flip scattering
amplitude. This equation is solved exactly in the limit U — oo in Sec. 3. Furthermore,
this section gives the parameters determinating the location of bound states within the
gap and a related residue constant. These parameters are further considered in Sec. 4,
which finally deals with the structure of the bound state. The results and their physical
interpretation are given in part 5. Some additional calculations are given in the appendices,

* Address: Zaktad Fizyki Teoretycznej, Uniwersytet Slaski, Uniwersytecka 4, 40-007 Katowice,
Poland.
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2. Formulation of the problem

Let us consider a superconductor with a magnetic impurity described by the hamil-
tonian

H=H,—AY [efretiotei-cs] Q.1
k
where
H, =Y gcictEY dfdo+ Y [Vicwds+ Vid e ]+ 3 U Y nan_g (2.2)
ks s ks s

is the one-impurity Anderson hamiltonian. The energy gap of the superconductor 4 is

expressed as
1
4= N (G (2.3)
k

where N is the number of cells and I is the usual coupling constant for a superconductor.
The summation in equation (2.3) over k is limited by Debye’s frequency wp. In our conside-
rations we overlook the changes in 4 associated with the distance from the impurity. When
we take one particle temperature Green’s function in Nambu notation

G = <ckslck’s>T' 2.4)
Here, the symbol < ...|... »T indicates the matrix
1 A |BE Ay |B_po—
<AkslBk's>T u e Z( < +ks| k Z Si ksl k s>) (25)
2 SCAZg_g|Bysys CAZy—s|B_w -

s

where s = +1. Rotational invariance in spin space leads to

<ckslcl::s> = <ck~s|clj’-—s>=

<cks!c—k’-s> = _<ck-slc—k’s>' B (2'6)
Introducing the unperturbed propagator
—g, 4 \!
GAz) = (z : ) @.7)
4 ,z—¢g

where z is complex energy, we can write Gy as
G = GU2)oue + ViGR(DH2)GA2)Vi. 2.8)

Here, #(z) is the non-spin-flip scattering amplitude, which satisfies the usual hermicity
condition

[W(=z)]" = «z%). (2.9)
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Some simplifications may be made a symmetrical conduction band is assumed, that is,
the density of states function g(e) appearing in the equation

o0

%Z e f ds(o)... (2.10)
k

-0

where N, is the density of states on the Fermi’s surface, is symmetrical,

o(®) = e(—e). (2.11)

Moreover, we can make use of the “particle-hole” symmetry of the hamiltonian (2.1);
this is equivalent to the transformation

Crs = iscf_s, &g —&, Vi— V_*,,,
d,—isdt, E—> —E, U= U. (2.12)

With the “particle-hole” symmetry of the model certain additional properties can be
found which are connected both with components of Green’s function and the non-spin-
flip scattering amplitude #(z). These properties has been discussed in the first paper of
Zittartz [3]. From the hamiltonian (2.1), we can construct the following set of the equa-
tions of motion for Green functions:

<cksick's>T = Glg(ékk’—*- I/kaz<ds!ck’s>T), (2.133)
o'z<dslck's>T . Gg(z Vk*<cksick’s>T+ U<n-sdsick’s>T)’ (2'13b)
k
<n—sdslck's> . _F:I) Z (Vk*<djsdsck—slck's>T— Vk*o-z<cksn—sIck's>T+
k
+ V—k<Ctk—sd—sdsick’s> T)9 (2130)

<disdsck—s|ck’s>T = Gl?[_ I/k<n—sdsick’s>T'i'
+az Z (Vl*<disclsck—slck’s>T'— V~Z<Ci'l—sdsck—slck’s>)]9 (2'13d)
1
O-z<cksn—s|ck’s>T = Gl(c)[<n>(5kk’ + I/;c<n—sdslck's>T-l_
+az 2 m*<cksdtscl—s'ck’s>T— V—l<cksCfl—sd—sIck’s>)]a (2133)
!
<Ctk—sd—sdslck’s>T = Fl(c)[— Vk*<n—sdslck’s>T+

+az Z (I/l*<Cik-sd—-sclslck’s>T+ Vl*<ka—scl—sdsick's>T)]' (213f)
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In equations (2.13) we use the notation

z—E, 0 \!
GAz2) = ’
a(2) ( 0 ,Z_E> 3 (2.14)
B =50 0 YT 2.15
Z) =
d 0 ,Z-—E—U H ( )
_ z—2E~U-+g, A -t
Yz = .
K@) ( 4 z+2E+U—ak> (2.16)
and
or 1 0
{ny = F{KdJdyT}, o, = 0_1) Q.17

In order to close the above equations, we adopt the usual approximation of the
decoupling for the terms on the right-hand side of equations (2.13d)~(2.13f). For example,
we can write the terms on the right-hand side of equation (2.13d) as follows:

<Ctl—sdsck—s|clj:s> = dCi-s) <Ci1—slclj:s>—<0fl—sck—s> (dlegpsy
(A2 C1C—s|Citsy = {CrCsy <AZ(lCisy —<dL0p-g) Cisleits. (2.18)
Then, equation (2.13d) becomes
(At g o™ = GU—=Vikn_dilevd” +
+0.{dleps” ; Vo —ng ; Vi eilewsy ™),
where
Mg = g{:n{<cks|ck’s>T}9 (2.19)
ng, = Fp{Cdilew) '} (2.20)
Making the same apprbximation in equations (2.13¢) and (2.13f), and substituting these
results into equation (2.13c), we obtain a closed set of equations of motion for Green
functions {cilepsdT, 0, {dilcpsyT and {n_gdlepsy™

A similar set of equations of Green’s function may be obtained by starting out with
the equation for the function

w110 Adry, s(djd-
osatits= 3o 1) D (atran ey @2b

s
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The solutions of the set of equations (2.13) and the similar set obtained with the
function o, {d,|d,>T can be expressed as

{aslewsyT = Gy = Gpdye + KGRH(2)GR Ve, (2.22)
0. ddslepd” = UDGLVy,  {ewldy™ = ViGRK(z) (2.23)
and
N(z)
d T = fz) = —2, 2.24
0,{dsld) (2) o) (2.24)

Defining the matrix functions

F(z) = Y. iVil*G(z) and F(z—2E~U) = ¥ |Vi|*’T'%(z—2E~U) (2.25)
k k

we may write the numerator and denominator of equation (2.24) as
N@) = z—E~U-2F(2)—F(z—2E—U)+ U <{n) + U(L{(2) —F(2) Lo(2)) +
+U(Li(z—2E-U)—F(z—2E—-U) Lo(z—2E—-U)) (2.26)
and
D(z) = (z—E—F(2)) (z—E—U—2F(z2)—F(z—2E-U))+
+ U(R(2) ~ F(2) Ro(2) +L,(2) —2F(z) L,(2) + F*(z) Lo(2)) —
—UlRy(z—2E~U)—F(z—2E—U)—~Ry(z—2E—U)+L,(z—2E—-U) +
+(F(z2)—F(z—2E—U)) L,(z—2E—U)—F(z) F(z—2E—U) Lo(z—2E— 0l @27
Here, we use the noiation
R@=2 (T 1 -, [Tl 2.29)
z—iw, z—im,
In the U — oo limit the numerator and denominator of equation (2.24) are reduced to
| N(z) = —1+{n)>—F(2) Lo(z)—L.(2) (2.29)
and
P(2) = —(z—E—F(2))+ Ry(2) = F(2)Ro(2) +Ly(2) —2F(2) L1(2) + F*(2) Lo(z).  (2.30)

Equations (2.22) to (2.24) clearly show that the problem of solving either the first
or the second sets of equations can be reduced to solving an integral equation for #(z). Note
that equation (2.24) for #(z) is the same as in the case of a normal metal except that the
matrix functions F(z) and F(z—2E— U) are expressed differently; they transform into the
common form when 4 = 0.
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3. Solution of the integral equation in the limit U — oo

Before we proceed to solve the integral equation (2.24), let us make certain assump-
tions regarding the density of states function, g(z). Let us assume that singularities of g(z)
are behind the large circle of a radius D (where D is the band width of the conduction
band), o(2) is analytic in some neighbourhood of the real axis, and

o0
{ o(e)de = finite.
= 00

These properties are characteristic of a density of states function in the parabolical form

0)2

0 lo| > D

o) =
G.1)

Let us analyse the properties of the function F(z) defined in (2.25) with the density of
states function as given above,

e ]

z+4 J‘ deo(e)
\/22—A2 K a—\/zz—A2

limiting ourselves only to the upper half-plane, which means assuming that

F(z) = =4 where 4 = No{|V|[%, (3.2)

Im VZ2-42>0 for any z.

F(z) is an ambiguous. If we want it to be single-valued we must cut the plane from
—JA>+D?to —4 and from 4 to A%+ D? and choose a single-valued branch. We do

this by assuming that \Jz2 =A% = i\/A*— 22 for z real numbers of the range —4 < z < 4.
In the plane thus defined F(z) is an analytical function which jumps when passing
from the upper half-plane into the lower one

F(o+i8)— F(@—18) = —2nid———— o/ &’ — 4%, (3.3)

\/w

Then, near the real axis F(z) can be continued analytically with account taken of the
values of the jump expressed by equation (3.3)

F(2)—F(z) = —27il ——= 3.4

\/
Let us introduce into our considerations the auxiliary function
X(2) = —(z—E-F@)+Ri(2)—F(@) Ro(D)+F(D~F@) m)—D+x(2) (3.5
where
2(2) = Ly(2)— (F+F) Ly(2)+FFLo(2). (3.6)
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Function y(z) may be determined by its singularities (Cauchy’s integral formula) because
it disappears at infinity, so

ida
xz) = 4 +x2) (3.7
P
where
a = Res @ = 2m%ALy(4) (3.8)
z=A4 AA
and
1 dz’ , o
1@ = 5 <_§— 1) < 002). (39
wi Jz —z

In the last equation |z'| ~ D > |z|, which consequently gives y,(z) < O(4?), so x,(z) can
in practice be omitted in the following calculations. Making use of the introduced auxiliary
function X(z) the equation (2.24) for #(z) may be rewritten as follows:

= - X(2)
Hz) = —(F-F)"'{1- : 3.10
@) = ~(F-F) ( M) (3.10)
Solution of the above equation is simplified by calculating the equation for @(z) in terms
of X(z). Then we form the difference #&— XX. The algebra is simple and we obtain

&3 XX = (F—F)2H() (3.11)

where @(z) and &(z) are functions received by replacing F(z) by F(z) in equations (2.30)
for &(z), (3.5) for X(z), and

H(z) = (1={m) (Ro—<m))+Lo(@) [-(z—E)+ Ry +L, 1+ Li(1-Ro—Ly). (3.12)

The last function is analytic except for simple poles and double poles at the set z, = iw,
along the imaginary axis. Then, the value of the H(z) function is determined by its value at
infinity,
lim H(z) = (n)*~2¢(n) = H(2). (3.13)
z—A4
Disregarding bandstructure effects (D — o), we see that the difference & — XX
expressed by equation (3.13) is finite when z — o0 and is thereby determined by its value
at infinity over the whole complex plane. Using the equations (3.4), (3.13) and (3.11) we
get the equation

P = (z—~E~F(2)) (z—E—F(2)K(z) = XX +4n22(2{(n> —<{nd?) :—AA o(x/z2—4%)

(3.14)
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which results in a function @(z) which behaves at the cutting points as

P(w+id) di(co ié)

(@+i6—E—F(0)) (0—i6—E~F(z)) = K(w); o] >4 (3.15)

where K(w) is positive and real. A particular solution of the relation (3.15) is

—A4

2_ 2 “ d
¥(z) = —(z—E—F(2)) exp{— i/-zzm_" (J— f )Z a’w \}n K@) } (3.16)
60

as can be checked. The particular choice of u(z) is explained by the fact that v already
reflects the correct behaviour of @ at the branch points +4 up to a sign perhaps as is
shown in Appendix A. This solution does not yet possess the properties of the function
@(z) in the range (—4, 4), so we must supplement them by introducing the function

2(2) '
65 = —— .
(2 w2 (3.17)
with the properties
(@) Glo+id) Gw—id) =1, |w|=4
(b) G(—4) = sign &(—4) = sign X(—4) = sign{ A+E+ g - az_l)
(©) G(4) = sign Aa
@ G(0) = ¢()/p(0) = 1.

Property (a) stems from the equation (3.14), (b) and (c) are fully discussed in Appendix A
(see Egs (A.2) and (A.3)) and follow from expression defining G(z). We can clearly see
from equation (3.17) that G(z) is an analytic function beyond the discontinuous points
of ®(z) because y(z) # 0 over the whole complex plane.

In order to find G(z) we may use the function

f()—G()«/2 4% (3.18)

This equation clearly demonstrates that the only possible singularities of the function f
are simple poles at the zeroes of G or &, respectively, which can be present only within
the gap. Using the Mittag-Leffler theorem we get

N
( ) 15— _ i\/Az—-aﬁ-
(2 =t J2—4% Z (3.19)

Z—CDj

i=1
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where the number of zeroes N is finite. The solution of the equation (3.19) when we assume
property (b) has the form

N
G(z) = [sign X(—4)] 1_[1 A[2) (3.20)
j=
where
e a2 G
AZ) = ——-——— .
T oA —iNE— BN} ‘
and
Aj(iA) =
If we know the zeroes w; and residue constant g, the function |
) N
®(z) = [sign X(—-4)] H1 A4(2)y(2), (322
=

which we obtain from equations (3.17) and (3.20) is the solution of the integral equation.

4. Position and structure of bound states

Let us now find the residue constant @ and zeroes @; of the function @(z), which we
can from the equation

&(2) B(2) = (z—E—F) (z—E~F) K(z) = 0. @.1)

The product of the functions ®(z) and @(z) does not introduce any ambiguous solutions
because these functions are analytical inside the gap. The explicit form of K(2) is obtained
from knowledge of the function X(z),

a 4
X(z) = A y+Dr()+ — — =
(2) [T+J(J’+ (y)+ iy +

+in y+i (1+ — tghM ——“(n))} y = g 4.2)
Vy -1 4
Here, we use the relation
vt ) (4.3)
A g TcO

where g is the effective superconductor coupling constant, T, the superconducting transi-
tion temperature of the pure metal, and T, the Kondo-Suhl temperature.
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In equation (4.2) we make use of the fact that

1 . 1 1
Ry(2) = Ry(— D)+ EZ F(im,) (z——iwn + y +i0),,> = 4.4)

n

A’ 2
= 2 +Ay(y+Dr(y9)

2 T 2, @n\7
=) T ) )

Using (4.2) and (3.14) we can express the function K{(z) by the equation

where

. 2
(:—E—F) ¢—E-PK() = #° {[+ Yo+ + - — i] ;
y+1 A

2 y+1 1 ﬁAy)Z 1 B4y
o1+ S tgh =2 —~ —tgh—= .
+n y—1[( + 5 teh— +4n{1 2tgh 5 g (4.6)

the zeroes of which given by the relation

e a) £V’ (1+4n) [2(1 +4n)+a(2t—a)]
Y2 = o 2 (1 1 4n) '

» n=L{n 4.7

when B4 — 0 (r(y*) = tgh pdy/2 = 0).

In order to solve (4.7) we have to impose on equation (4.6) an additional condition
stemming from property (d) of function G(z) which, on the other hand, allows us to find
the residue constant a. The fact that zeroes y,, ¥, occur in both the functions

P(Dlmiw = —(—E=Flci exp{— Ej& J ;/Zo%’- In KIE(_“’;)} (4.8)
y
and
Gie0) = [sign X(~a] T ¢ (e “9)
IS
where
¢, = arcsin y,, —gg%gg (4.10)
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let us deduce (see Appendix B, Eqs (B.4), (B.5)) that the equation (4.6) should possess one
double-root

Y2 = Y1 = V2, 4.11)
which requires a definition of the sign of the expression (r—a/2)
sign (z— %) —sign i = 1. 4.12)
Making use of the last relations (4.11) and (4.12) we may find the constant
a = 1+ 12 +7%(1 +4n) (4.13)
and
- T
hh=h=s-"77—FF—F———- 4.14)
V4721 +4n)

The location of the bound states inside the energy gap can be seen in Fig. 1. We still
have to analyse the behaviour of the curve in the antiferromagnetic state (E < 0). Consider-
ing this state we can see that for A/E < 0 and T}, € T, the bound state is at the edge of the

Ay ¥
v(£)

1
_g 3 L
E

== 7

—V1+1%%(1+4n)

4 /// 5 -1

TP, T, £>0

Fig. 1. Qualitative plot of the bound state location as a function of i/E

gap y; = 1, shifting in position towards the middle. The quantity v = E/A+1/g in this
region is very large and we can expand formulas (4.13) and (4.14) in terms of 1/z:

n*(1—4n) n*(1+4n)
yy=1- S and a = — TP 4.15)
The corrections to (4.15) for all T < T, are calculated in Appendix C with the result
n? \/1 pa  \? 1 B4
=1-—— —tgh— —1) —8](1—n)=tgh—
et Nt
o

A

1 _p4 2
—tgh— —1}. '
+ S tgh = } (4.16)



542

When A/E = —g, the bound state is right in the middle of the gap y,(T} = T.o) = 0.
After passing the middle of the gap the bound state tends to the asymptote

A SRS el mn
hn (f = —00> = —-\/1+7r2g2(1+4n)'1 4.17)
when A/E - —o0. The location of the bound state in this region is defined by
(1+4n 1+4
y1=—1+n( 2—), a=2'c+u. (4.18)
27 2T
The corrections to (4.18) for all T > T,, can be calculated, too, with the result
2 \/'1 B4\ 1 p4
= -1+ -— —tgh— —1} — —n) = tgh —
Y1 + ( A)Z{ (2g 7 ) 8[(1 n)2tg12 +nJ+
21— S
A
' 1 p4 )2
+ -tgh ——1;. 4.19
S } 4.19)

Finally, let us examine the structure of the bound states. Information about this is
provided by the density of states and electronic density distribution, which we can calcu-
late, by using Green’s function Gy given by equation (2.22). Let us find the ~-matrix which
appears in equation (2.22) by assuming z & 4 (z = Ay). Then the functions X(z) and &(z)
which can be found from equation (3.10) for #(z) are expressed as

X(y) = 4 <z— —‘L) (4.20)
y—1

and

J—V1
& Bl s S ———————————— (4.21)
) yyl—\/l—yzx/l—yf—lw(y)

where y; given by equation (4.14) describes the location of bound states inside the energy
gap and

—.__.2 oo . 3
W) = —(e—E—F)?, 5= YIZP [_ & (ln K@) | InK(=)

S . (422
2 JJxP—1\ x—y x+y >( )
1

Calculation of () is possible when we know the explicit form of K(x) given by equation
(3.14), which under these conditions changes into

. @5(0) x—y;1\? ‘
K0 = " e (1) N
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where "

Bo(0) = A2 +m2(1+4n) (4.24)
is the value of @y(z) of a non-superconducting metal (4 = 0) on Fermi’s surface z = 0.
Thus,

1—yy, +V1=p21-32

p0) = =00 ; (4.25)
with the same
y+y
() = 2(0) T
=1/
Upon substituting (4.20) and (4.26) into (3.10) we obtain the final form of the z-matrix
vy -ia-
Mz, 4y = Y2 2 2Th (4.26)
2ni y—y,
and of its diagonal and off-diagonal components
vy =1 -
i 4 = L2 AN, @27y
iy
Vi1 y,(-
Aty(z, 4) = — —y—— yl(, —-yz—l) (4.28)
2mi Yy -1

and thus of Green’s function Gy,.. We can find the density of states from the first diagonal
component of the Nambu matrix, vis.,

21 ,
Nw) = —~ —Im E G w+16). 4.29)
n N
k

Using the equations (4.28), (4.27) for the components of the #-matrix we obtain

N(w) = Ny(0)+ % [6(w—Ady,)—(w—4)+Hw+Ay)—d(w+4)] (4.30)
where

1
e =4
J\/l—(A/w)z &

0 o] < 4

Nyo(w) = 2N, (4.31)

From this relation we can deduce that there can occur bound states with energies +4y;
having a symmetrical superposition structure of a particle and a hole. A bound state like
this structure is also confirmed by the electronic density distribution

w0

2 J ) r»
o) = — 52 el J dof(w) Im GG (o +16) (4.32)
1T .

kk’ -0



544

where Q is the volume of the system and f{w) is Fermi’s distribution function. From equa-
tion (4.32) we get

kNo(1=yD) y r
Aer) = o) =go = 55 fd R[ ( ho 1)] 433
o(r) = e(r)—go = 672 f(w) Re e \/y —{cosh 7 + (4.33)

4 e k
where L™ = ?kaoA \/ 1—y2, and g4 = Fis the uniform electronic density of the
T

pure superconductor. .
The formula (4.23) includes two distinct contributions to the electronic density distri-
bution. One of them is

Ao () = Brr?) e~ (4.34)

where the characteristic length / is defined by /! = L-1(y;) and describes the bound states
within the gap |w| < 4. Such a contribution fulfills the relation

fd3rdour) =%,
which is the expected result because only the “particle” part of the bound state should
contribute to the “particle” density. We can also associate the normalized bound state

wave function with the density distribution (4.34),
—r/l

o(r) = NOITRE

(4.35)

This relation indicates that the bound state decreases exponentially with distance from the
impurity.
The second contribution to the electronic density distribution

e—r/l

Apo,(r) = — — 4.36
M= - (436)
from all the band states cancels the bound state contribution apart some uninteresting

Rudermann-Kittel oscillating terms.

5. Discussion

In Section 4 we analysed the structure and the position of bound states inside the
energy gap. The bound states have the structure of a symmetrical superposition of the
“hole” state with energy —Aly,| and “particle” state with energy 4|y, |. This structure of
bound states is determined by the fact that #{(—z, A) = —#(z, —A).

The density of states and the electronic. density distribution are concordant with the
fact the bound states have a structure exactly the same as that of Bogoliubov’s quasi-
particle.

The position of bound states inside the energy gap was found only in the case when
an antiferromagnetic impurity alone was present (£ < 0), because Anderson’s hamil-
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tonian can describe this state only. In this case the location of bound states inside energy
gap is exactly the same as that received by Zittartz [3]. Extrapolating the plot to positive
values of E, we notice that the location of bound states at the point 4/E = 0 changes
jumpwise. There is a bound state at the upper edge of the gap y; = 1 when /E — 0~
(lE| > 4, E < 0), and at the lower edge when A/E — 0" (|E| > 4, E > 0). Itis to be noted that
at the point A/E = 0 there is a certain energy jump from the value —E to E, which shifts
this bound state from one edge of the gap y; = 1, to the other, y; = —1. The author
would like to thank Dr B. Kozarzewski for suggesting this topic and for many helpful
discussions.

APPENDIX A

From equation (3.16) we obtain

p(24) = [P(£4), (A1)
which allows us to deduce the properties (b) and (c) of function G(+4). Then
H(—4) X(-4) . [ a
G(—4) = = =sign{ A+E+A{t~ =}, (A2)
D=0 w=a) 2

where the fact &(—A4) = X(—4) = A+E+A<t — ;) is used.

In the same way we can derive property (c),
D
G(4) = —A; = sign (la). (A.3)

At the point z = 4 functions &(z) and X(z) are discontinuous, so it is preferable to use
the limit

~4 —4
im 2=2 X(z) = — lim 2=Z &(z) = ia. (A.4)
z—4 A z—4 A

APPENDIX B

When fi4 — 0 the ratio K(x)/K(—x) can be formulated,

K(x) _(x—yl)(x—yz)(x+1 . E+A)2
K(=x)  (x+y)(x+y,) x—1> (E—A

whereby we get from the equation (3.16)

i
(t—@1—92)

Y@Dlsmi = =(Z2—E=F(2))],=10” (B.1)

where @; = arcsin y;, j =1, 2.
Taking into consideration the equation (4.9) and property (d) of function G(z), we
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obtain ’

= —;— (n—@1—@2)

e = [sign X(—4)] f] e_i(g _‘”)"’. | (B.2)
i=1

The only physically sensible solution can be obtained by assuming that v, = 1, v; = 0.
Then the equation (B.2) will take the form

i
vl (p2--91)

e = [sign X(—4)], (B.3)

from which we can draw the final conclusion ¢, = @, = @,, which means that y; = y,

a
and sign X(—4) = sign 4 (1: - —2—> = 1.

But sign 4 =1, thus
. a 1
sign|{t— —) =1.
2 2

APPENDIX C

For z~ +4 we can calculate the zeroes of @(z) straight from the equation (2.30).
Making use of the equations (3.12) and (3.13) we can find the value

(n-l)-ghg—f-m
z
Lo(y) = - 1 s ¥ = Z > C.1n
—(z—E)+ —
g
which, in turn, can be put into the equation for @(z),
1+ A
&(y) = ~(A—E)+ = +1J y(tlﬂl—o
g 1- 2
A
14y i(n I)tg hé—y —n
+n%A? = 0. (C2)
1—y A

~(4-E)+ =
g

This equation gives more precise results for y, in the region of large negative values

of A/E.
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