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Emphasizing the corpuscular aspect, the phenomenon of light diffraction can be treated
as a process of transfer of complex momenta between a photon beam and a macroscopic
diffracting arrangement. This arrangement can bestow upon the photon beam only such
complex momenta that appear in its transferable momenta spectrum. We show this as an
example, on X-ray beam diffraction in a crystal and on photon beam diffraction on the
edge of an aperture in an opaque screen.

It was shown recently [1] that in the case of the Fraunhofer diffraction the pheno-
menon can be treated as a result of complex momenta transfer between the diaphragm
and photons. Such a description of the phenomenon, emphasizing the corpuscular aspect,
leads to practically the same results as the classical Kirchhoff theory in the formulation
of Rubinowicz [2]. The question arises, whether more general regularities appear during
the exchange of complex momenta between the photon beam and the diffracting arrange-
ment. '

In all cases of an interaction between two systems, one of them can be treated as
the “donor”, and the other as the “receiver” of any definite physical quantity. The value
of the transferred physical quantity should depend on the transferable value in the first
(donor) system and on the strength of the interaction between the systems (this strength
depending, among other factors, on the receiving ability of the second system). Where the
transferable quantity disappears the transferred quantity should also disappear,

Let us draw our attention to a relatively simple kind of interaction: elastic scattering
of an X-ray beam on a perfect crystal lattice. Let all lattice points be identical, their coordi-
nates being described by the lattice vectors
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where @, are basic vectors of the crystal unity cell and /; are integers. The vector of the
reciprocal lattice

g = Xi:gibi 2

is determined by the basic vectors of the reciprocal lattice b; and by the Miller indices g;
of the Bragg planes. Let us try to determine a function which will express the interaction
abrhty of the crystal lattice with the X-ray beams. In a recent paper [3] a function was
introduced which has the meaning of the ability of the system to transfer physical quanti-
ties, namely the “transferability”. In the case of a system consisting of microsystems the
density of the transferability is a complex function v which is called the density of activity.
The last, as it was proved possesses all main features of a quantum-mechamcal wave
function.

Basing on the above statements we assume that the sites of the crystal lattice represent
regions of concentration of the density ‘of activity. Considering the presumption that all
the lattice sites are identical, we see that the density of activity for a fixed time ¢ = 0 is
a perlodlcal functlon w(r+1). = y(r) for all space points r and for all the lattice transla-
tions I Hence, this.function can be represented by means of a Fourier series

¢(r) Z %(r) py = Ayexp (i2ngr), ©))

where the summation is performed over the indices gy, g, 8, and y, is the component
of the density of activity corresponding to the wave vector an The coefficients of the
expansion are given by 8
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e = -[ w(r) exp (—i2ngr)dc )}
Vcell 1
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where the 1ntegrat10n is performed over the basic cell of the lattice.

Our interpretation of the wave function of quantum mechanics [1, 3] enables us to
ascribe a meaning to the expression —ihpyp(r), namely, to consider it as the density of the
transferable complex momenta, i. e. ‘momenta that could under certain conditions be
transferred to another system. As follows from (3), the density of the transferable complex
momenta of- the crystal lattice is:

—ihpy(r) = 2nh Z gy,(r), 3

where the coefficients of y,(r) are the momenta. Thus only discrete momenta 2nhg
proportional to the vectors of the reciprocal lattice appear in the spec-
trum of the transferable momenta of the crystal. Therefore, when we pass
a uniform monochromatic beam of photons with wave vector ko through a crystal, photons
obtain additional momenta due to.elastic scattering in the crystal lattice. It seems quite
natural that the values of the transferred momenta should belong to the set of the transfer-
able momenta. Hence, upon changing the direction -of the wave vector from kg to k.
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the relation
ky—ko = 2ng; |k,| = kol )

should hold which is identical with the Bragg condition. Denoting the angle between ko
and k, by 0, we get from (6) 2dsin 6/2 = 2nn/|ko| where n is an integer and d = n/|g|.
In the case when the wavelength of the X-ray fulfils the condition 4 > 2d, the Bragg
conditions cannot be satisfied as momenta smaller than a certain boundary value do not
appear in the momentum spectrum of the crystal lattice.

In the above formulation of the Bragg condition we have based on a ‘rule that can be
expressed as follows: a system can transfer a certain complex momentum
only when this momentum appears in the spectrum of the complex
momenta of the transferring system. Let us make use of that tule — the rule
determining the possibility. of momentum transfer— to_describe light diffraction on an
edge of an aperture in a screen. For s1mp1101ty, we-consider a thin, opaque planar screen
with a small opening, lying in the X0Y- -plane of the Cartesian coordinate system. A uni-
form monochromatic beam of photons with wave vector k, falls on the aperture 0 pel'pendlc-
ularly to the plane of the screen and interacts with the screen. The photons passing near
the edges of the aperture obtain additional transverse complex momenta, i. e. a change
in the direction of the motion of photons — diffraction occurs.

Let us find the spectrum of the complex momenta of a planar screen with an aper-
ture. For that purpose we ascribe to the fixed uniform screen (at the moment ¢ = 0) th{e
density of activity u equal 1 everywhere outside the aperture and equal to O inside it.
For the complementary screen the density of activity %, is 1 in the region of the opening
and 0 everywhere else. Consider the Fourier expansion

y = | A, exp (ikr)dk. 7 @)
The Fourier transform -

A, = | wexp(—kr)ds ®)
screen

is the amplitude of the component of the density of activity v, = A4, exp (ikr). The k-
component of the density of the complex momentum is given by the expression —ihpy,.
In the special case of a screen with an aperture together with the complementary
diaphragm (i. e. the opening closed), the density of activity of such a full screen is equal 1
in the whole X0Y-plane. The Fourier transform of the function 9+, =1 is expressed
by the product §(k,) 6(k,), where k, and k, denote projections of the wave vector on the
directions of the 0Y and 0X, respectively. As we are interested in the motion of photons
which obtain additional transverse momenta different from zero, i. e. when |k] # 0,we
have for that case: " ' '
| wexp (——1kr)do'+ | woexp(—ikr)ds = 0. 9)

screen aperture .
Hence the spectral dlstrlbutlon of the components of the density of activity of a screen
with an aperture is equal to the spectral distribution — with opposite sign —of"the’com-
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ponents of the density od activity of the complementary screen. Thus the integral over the
infinite area (the screen) can be replaced by the integral over the area of the aperture.
We will make use of this result further on. The distribution of the density of activity of
the photon beam may be calculated assuming elastic scattering in the edge region of the
aperture; thus, photons with initial momentum %k, and final (after diffraction) momentum
hk, (where |k;| = |ko|) obtain additional transversal momenta (perpendicular to ky),
h(ky—ko), = hk, originating from the screen. We assume also that the spectrum of the
complex momenta transferred from the screen to the photons during elastic scattering has
approximately the same shape as that of the transferable complex momenta of the screent.
Considering the above, in the case of the Fraunhofer diffraction — when a parallel photon
beam with a fixed wave wector k; is observed, the Fourier transform of the function
has, according to (9), the form

Ay = — [ exp[—ik;—ko), rldo (10)

aperture _

‘and gives us a quantity proportional to the amplitude of the density of activity of the
investigated beam (the case of a homogeneous falling beam).

In the investigation of Fresnel diffraction of light in a point P which is at a finite
distance R from the screen, contributions from all photons arriving from the scattering
region to the place of observation should be added. In that case (k; —k,)  in the expression
for the amplitude of the density of activity is not constant, unlike that for the case of
Fraunhofer diffraction of light. Therefore, on performing the integration one must consider
1° the dependence of the number of photons arriving at P on the position of the surface
element do, and 2° the change of the angle between the constant vector k, and the vector
k, directed to the point of observation with the coordinates (0,0, R).

Such a choice of the origin of the coordinate-system makes the directions of the
vectors (k;—ko), and r opposite to each other and

l(k1"ko)J_ | = ko sin (ko, ky). (11)

The relations (10) and (11) may be used to calculate the radiation density of activity in the
point P after introducing some simplifying assumptions mentioned below. Let us assume
that the number of photons directed to the point P does approximately not depend on the
position of the scattering element do. Further, experiments show that a diffraction pattern
is observed only near the geometrical shadow, i. e., only for small deviation angles of the
light beam deflected from its original direction k. The following assumption is thus justified :

'—Ig' <1, (12)

with the resulting approximation |(k;—ko), | = kolrl/R. Hence, basing on (10), the
amplitude of the density of activity of the photon beam at the point R will be approxi-
mately

A, =const | exp (iko|r[*/R)do. (13)

aperture

! With this assumption, the Babinet rule can be obtained from (9).
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In addition, the size of the aperture 0 does not have to be very small which may be
concluded from the accepted condition (12), because an integral of the form (13) is, as
it is well known, quickly convergent and the contributions from large values of |r|/R do not
influence significantly the result of the calculations [4].

Owing to the simplifying assumptions made when considering the problem of Fresnel
diffraction we obtain a result similar to that evaluated on the base of the Kirchhoff theory
which proves the usefulness of our simple model describing the phenomenon of diffrac-
tion without making use of Huygens principle.

In the presented description of the phenomenon of diffraction as a process of scattering
and exchange of the momenta of X-ray photons with the crystal lattice, or the exchange
of the momenta of light photons with the screen it becomes obvious that the values of the
complex momenta transferred to the photons depend on the Fourier distribution of the
density of activity of the diffracting arrangement. As a consequence the values of trans-
versal momenta transferred to photons do not depend on the initial values of the photon
momenta (if no fundamental change arises in the mechanism of interaction with the change
of initial values), but they depend on the distribution of the scattering elements.

The author is much indebted to Dr J. Petykiewicz for reading the manuscript and
for valuable remarks.
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